
Type Classes and Filters for
Mathematical Analysis in Isabelle/HOL

Johannes Hölzl1?, Fabian Immler1??, and Brian Huffman2

1 Institut für Informatik, Technische Universität München
hoelzl@in.tum.de, immler@in.tum.de

2 Galois, Inc.
huffman@galois.com

Abstract. The theory of analysis in Isabelle/HOL derives from earlier
formalizations that were limited to specific concrete types: R, C and Rn.
Isabelle’s new analysis theory unifies and generalizes these earlier efforts.
The improvements are centered on two primary contributions: a generic
theory of limits based on filters, and a new hierarchy of type classes
that includes various topological, metric, vector, and algebraic spaces.
These let us apply many results in multivariate analysis to types which
are not Euclidean spaces, such as the extended real numbers, bounded
continuous functions, or finite maps.

Keywords: Type classes, Filters, Mathematical analysis, Topology, Lim-
its, Euclidean vector spaces, Isabelle/HOL

1 Introduction

Mathematical analysis studies a hierarchy of abstract objects, including vari-
ous topological, metric, and vector spaces. However, previous formalizations of
mathematical analysis have not captured this hierarchical structure. For exam-
ple, in HOL Light’s multivariate analysis library [4] most theorems are proved
only for the fixed type Rn of finite Cartesian products. Similarly, Isabelle’s origi-
nal library of analysis by Fleuriot and Paulson [1] supported most concepts only
on R and C.

Isabelle/HOL’s new library for mathematical analysis derives from these two
earlier libraries, but brings them closer to the mathematical ideal: Isabelle/HOL
provides the concept of type classes, which allows us to state lemmas generically
for all types that provide the necessary operations and satisfy the corresponding
assumptions. This approach is therefore perfectly suited to exhibit the hierar-
chical structure of spaces within mathematical analysis.

In the following text we present the new hierarchy of type classes for math-
ematical analysis in Isabelle/HOL and preview some example class instances:

– Finite Cartesian products Rn, R, and C are all Euclidean spaces.
? Supported by the DFG Projekt NI 491/15-1

?? Supported by the DFG Graduiertenkolleg 1480 (PUMA)

– The extended reals R = R ∪ {∞,−∞} are a non-metric topological space.
– Finite maps (maps with finite domain) N⇁f R, are a complete metric space

but not a vector space. They are used to construct stochastic processes [6].
– Bounded continuous functions R →bc R form a Banach space but not a

Euclidean space; their dimension is infinite. They are used to prove that
ordinary differential equations have a unique solution [7].

Figure 1 shows the type class hierarchy we present in this paper. Full lines are
inheritance relations and dashed lines are proved subclass relations. We group
the type classes into topological, metric, vector and algebraic type classes. For
completeness we show some of the algebraic type classes, but they are not the
main focus of this paper. All type classes described in this paper are available
in Isabelle 2013 and carry the same names in the formalization. An exception is
the order topology, available in Isabelle’s development repository3.

Our formalization of filters and limits is another primary contribution of our
work. While filters have long been used to express limits in topology, our generic
limit operator parameterized by two filters is novel (see Section 4.2). Filters
are also useful for more than just limits—e.g. a filter can express the almost
everywhere quantifier, which recognizes predicates that hold with probability 1
on a probability space.

Topological

Vector

Metric

Algebraic

topological-space

t0-space

t1-space

t2-space perfect-space

first-countable-topology

second-countable-topology

linorder-topology

metric-space

complete-space

heine-borel

ab-group-add

ring

field

real-vector

real-algebra

real-field

real-normed-vector

real-normed-algebra

real-normed-field

banachreal-inner

euclidean-space

Fig. 1. Type class hierarchy

3 http://isabelle.in.tum.de/repos/isabelle/rev/4392eb046a97

2

2 Preliminaries

The term syntax used in this paper follows Isabelle/HOL, i.e. as usual in λ-
calculus function application is juxtaposition as in f t. The notation t :: τ
means that term t has type τ . Types are built from the base types B (booleans),
N (natural numbers), R (reals), type variables (α, β, etc), via the function type
constructor α → β, and via the set type constructor α set. The universe of a
type α, i.e. the set of all elements of type α, is written Uα. We use =⇒ for
logical implication; it binds – in contrast to Isabelle/HOL notation – stronger
than universal quantification, i.e. ∀x. P x =⇒ Q x equals ∀x. (P x =⇒ Q x).

Isabelle/HOL provides (axiomatic) type classes [2], which allow to organize
polymorphic specifications. A type class C specifies assumptions P1, . . . , Pk for
constants c1, . . . , cm (that are to be overloaded) and may be based on other type
classes B1, . . . , Bn. The command class declares type classes in Isabelle/HOL:

class C = B1 +B2 + . . .+Bn+
fixes c1 :: α κ1 and c2 :: α κ2 and · · · and cm :: α κm
assumes P1 and P2 and · · · and Pk

In the type class specification only one type variable, α, is allowed to occur.
Variables in P1, . . . , Pk are implicitly universally quantified. A type α is said to
be an instance of the type class C if it provides definitions for the respective
constants and respects the required assumptions. In this case we write α :: C.

With the command instance we can add subclass relations in addition to
the declared base classes. We have for example the type class finite for types α
where Uα is finite and a type class countable for types α where Uα is countable.
Then we can use instance finite ⊆ countable to add a subclass relation stating
that all finite types are also countable types.

3 Related Work

Isabelle’s original theory of real analysis was due to Fleuriot and Paulson [1]. It
covered sequences, series, limits, continuity, transcendental functions, nth roots,
and derivatives. These notions were all specific to R, although much was also
duplicated at type C. This material has since been adapted to the new type class
hierarchy. The non-standard analysis part with ∗R and ∗C is not adapted.

Much of the work presented in this paper comes from the Isabelle/HOL
port of Harrison’s multivariate analysis library for HOL Light [4]. In addition to
limits, convergence, continuity, and derivatives, the library also covers topology
and linear algebra. The Heinstock-Kurzweil integral is not yet described in [4],
but it is now available in HOL Light and also ported to Isabelle/HOL. Compared
to the work presented in this paper the HOL Light library is mostly specific to
Rn.

Instead of formalizing limits with filters, Harrison invented a variant of nets
which also bore some similarities to filter bases. His library provided a tends-to

3

relation parameterized by a single net, but did not have an equivalent of our more
general limit operator which is parameterized by two filters (see Section 4.2).

Lester [9] uses PVS to formalize topology. He formalizes topological spaces,
T2-spaces, second countable space, and metric spaces. He does not provide vector
spaces above metric spaces and he does not use filters or nets to express limits.

Spitters and van der Weegen [10] formalize a type class hierarchy for algebraic
types in Coq. Their goal is efficient computation, hence they support different
implementations for isomorphic types. In contrast, our goal is to share definitions
and proofs for types which share the same mathematical structure. They also
introduce type classes in category theory which is not possible in Isabelle as type
classes are restricted to one type variable. However, for mathematical analysis
and also for the algebraic type class hierarchy in Isabelle/HOL they suffice.

Hölzl and Heller [5], Immler and Hölzl [7], and Immler [6] provide instances of
the type classes presented in this paper: they formalize extended real numbers,
bounded continuous functions, and finite maps.

4 Topology

Topology is concerned with expressing nearness of elements in a space. An open
set contains for each element also all elements which are in some sense near
it. This structure is sufficient to express limits and continuity of functions on
topological spaces. This generality is actually needed to formulate a notion of
limits and convergence that is also suitable for extended real numbers. More
specific formulations (e.g. in terms of metric spaces) do not work for them. For a
introduction into topology the reader may look into standard textbooks like [8].

4.1 Topological Spaces
A topological space is defined by its predicate of open sets. In mathematics the
support space X, the union of all open sets, is usually explicitly given. In Isa-
belle/HOL a topological space is a type in the following type class:

class topological-space =
fixes open :: α set→ B
assumes open Uα and open U =⇒ open V =⇒ open (U ∩ V)

and (∀U ∈ S. open U) =⇒ open
⋃
S

closed :: α set→ B
closed U ⇐⇒ open (Uα \ U)

On a topological space, we define the limit points, interior, closure and frontier
of a set in the usual way.

On the real numbers, the canonical topology contains all half-bounded open
intervals:]a,∞[and]∞, a[. It is also generated by them, i.e. it is the small-
est topology containing all half-bounded open intervals. This is called an order
topology on a linear order:

class linorder-topology = linorder + topological-space +
assumes open = generated-topology

⋃
x{]x,∞[,]∞, x[}

4

Here generated-topology A is the smallest topology where the sets in A are open.
A is a subbase, i.e. A need not be closed under intersection. Instances for order
topologies are the real numbers and the extended real numbers.

Separation spaces. As the open sets of a topology describe only nearness, it is
still possible that two distinct elements are always near, i.e. they are topologically
indistinguishable. This is not desirable when formulating unique limits in terms
of open sets. To prevent this, different classes of separation spaces are specified,
called T0-, T1-, and T2-spaces:

class t0-space = topological-space +
assumes x 6= y =⇒ ∃U. open U ∧

(
x ∈ U ⇐⇒ y /∈ U

)
class t1-space = topological-space +
assumes x 6= y =⇒ ∃U. open U ∧

(
x ∈ U ∧ y /∈ U

)
In T1-spaces singleton sets are closed, i.e. closed {x}. A T2-space (also called
a Hausdorff space) is the strongest separation space we provide. A T2-space
provides for any distinct elements x and y two disjoint open sets around them:

class t2-space = topological-space +
assumes x 6= y =⇒

∃U, V. open U ∧ open V ∧ x ∈ U ∧ y ∈ V ∧ U ∩ V = ∅

We provide type class inclusion for these spaces according to their numbering;
i.e. a T2-space is also a T1-space is also a T0-space. In Section 5.1 we also prove
that each metric space and each linearly ordered topology is a T2-space.

instance t1-space ⊆ t0-space
instance t2-space ⊆ t1-space
instance linorder-topology ⊆ t2-space

While the T1-spaces tell us that two elements can always be separated, we
also need its dual: in a perfect space each open set containing an element always
contains elements around it; the singleton set is never open. This is the dual to
closed {a}. Only in perfect spaces is limx→a meaningful for each point a.

class perfect-space = topological-space + assumes ¬open {a}

Instances of perfect spaces are Euclidean spaces and the extended real numbers.

Topologies with countable basis. A first countable topology assumes a count-
able basis for the neighborhoods of every point; i.e. it allows us to construct a
sequence of open sets that converges towards a point x. Together with a T1-space
this allows us to construct a sequence of points that converges to a point x.

class first-countable-topology = topological-space +
assumes ∃A. countable A ∧ (∀a ∈ A. open a ∧ x ∈ a) ∧

(∀U. open U ∧ x ∈ U =⇒ ∃a ∈ A. a ⊆ U)

5

Examples of first countable topologies are metric spaces.
Second countability is an extension of first countability; it provides a count-

able basis for the whole topology, not just for the neighborhoods of every point.
This implies that compactness is equivalent to sequential compactness (which
will be introduced in Section 4.4).

class second-countable-topology = topological-space +
assumes ∃B. countable B ∧ open = generated-topology B

instance second-countable-topology ⊆ first-countable-topology

Instances for second countable spaces are Euclidean spaces, the extended real
numbers, and finite maps (α :: countable) ⇁f (β :: second-countable-topology).

4.2 Filters and Limits
A filter is a set of sets (or equivalently a predicate on predicates) with a certain
order structure. As we will see shortly, filters are useful in topology because they
let us unify various kinds of limits and convergence, including limits of sequences,
limits of functions at a point, one-sided and asymptotic limits.

Many varieties of logical quantification are filters, such as “for all x in set
A”; “for sufficiently large n”; “for all but finitely many x”; “for x sufficiently
close to y”. These quantifiers are similar to the ordinary universal quantifier (∀)
in many ways. In particular, each holds for the always-true predicate, preserves
conjunction, and is monotonic:

(�x. True)
(�x. P x) =⇒ (�x. Q x) =⇒ (�x. P x ∧Q x)
(∀x. P x =⇒ Q x) =⇒ (�x. P x) =⇒ (�x. Q x)

We define a filter F as a predicate on predicates that satisfies all three of
the above rules. (Note that we do not require filters to be proper ; that is, we
admit the trivial filter “for all x in {}” which holds for all predicates, including
λx. False.)

is-filter :: ((α→ B)→ B)→ B
is-filter F =
F (λx.True) ∧
(∀P,Q. F (λx. P x) =⇒ F (λx. Q x) =⇒ F (λx. P x ∧Q x)) ∧
(∀P,Q. (∀x. P x =⇒ Q x) =⇒ F (λx. P x) =⇒ F (λx. Q x))

We define the type α filter comprising all filters over the type α. The command
typedef provides functions Repfilter and Absfilter to convert between α filter and
(α → B) → B; we use eventually :: (α → B) → α filter → B (defined as Repfilter
with swapped argument order) to apply a filter to a predicate.

typedef α filter = {F | is-filter F}

Note: For each filter F :: α filter, we will usually show only its characteristic
equation eventually P F ⇐⇒ F P , leaving the raw definition F = Absfilter F and
the proof obligation is-filter F implicit.

6

Finer-than ordering. We define the ordering F1 ≤ F2 to mean that filter F1
is finer than F2, i.e., ∀P. eventually P F2 =⇒ eventually P F1. For filters that
represent bounded quantifiers, ≤ agrees with the subset order: “for all x in A”
≤ “for all x in B” iff A ⊆ B. This ordering also makes α filter into a complete
lattice, with the trivial filter as the bottom element and ∀ as the top element.

� ≤ � :: α filter→ α filter→ B
F1 ≤ F2 ⇐⇒ (∀P. eventually P F2 =⇒ eventually P F1)

Basic filters. On any linearly ordered type, we define filters at-top to mean
“for sufficiently large y” or “as y −→ +∞”, and at-bot as “for sufficiently small
y” or “as y −→ −∞”. We use sequentially as an abbreviation for at-top as a filter
on the naturals.

lemma
eventually P (at-top :: (α :: linorder) filter)⇐⇒ (∃x. ∀y ≥ x. P y)
eventually P (at-bot :: (α :: linorder) filter)⇐⇒ (∃x. ∀y ≤ x. P y)

In the context of a topological space, we define nhds x as the neighborhood
filter, which means “for all y in some open neighborhood of x”.

lemma
eventually P (nhds x)⇐⇒ (∃U. open U ∧ x ∈ U ∧ (∀y ∈ U. P y))

The principal filter of a set B represent a bounded quantifier, i.e. “for all x
in B”. It is useful for constructing refinements of the neighborhood filter. We
define at x within U as the punctured neighborhood filter, “for all y ∈ U and
y 6= x in some neighborhood of x”. We also define one-sided filters at-left and
at-right. at x is an abbreviation for at x within Uα. F1 u F2 is the infimum of the
filters F1 and F2.

lemma
eventually P (principal S)⇐⇒ (∀x ∈ S. P x)

at � within � :: (α :: topological-space)→ α set→ α filter
at-left, at-right :: (α :: linorder-topology)→ α filter
at x within U = nhds x u principal (U \ {x})
at-left x = at x within]∞, x[
at-right x = at x within]x,∞[
When we apply a function to the argument of each predicate in a filter we

get a filter again. With filtermap f F we transform the filter F by a function f .
We will shortly use it for expressing general limits.

lemma
eventually P (filtermap f F)⇐⇒ eventually (λx. P (f x)) F

lemma
filtermap (λx :: R. − x) at-top = at-bot
filtermap (λx :: R. 1/x) at-top = at-right 0

7

Limits. Filters can be used to express a general notion of limits. To illustrate
this, we start with the usual epsilon-delta definitions of limits of functions and
sequences on reals, and then incrementally generalize the definitions. Finally we
end up with a single definition, parameterized over two filters, that can express
diverse kinds of limits in arbitrary topological spaces. Here are the usual epsilon-
delta definitions of limits for sequences and for functions at a point.

(yn −−−→ L) = (∀ε > 0. ∃n0. ∀n ≥ n0. |yn − L| < ε)
(lim
x→a

f(x) = L) = (∀ε > 0. ∃δ > 0. ∀x. 0 < |x− a| < δ =⇒ |f(x)− L| < ε)

The reader may recognize “∃n0. ∀n ≥ n0” as the filter sequentially. Also note
that “∃δ > 0. ∀x. 0 < |x− a| < δ” is equivalent to the punctured neighborhood
filter (at a). Therefore we can rewrite the above definitions as follows.

(yn −−−→ L) = (∀ε > 0. eventually (λn. |yn − L| < ε) sequentially)
(lim
x→a

f(x) = L) = (∀ε > 0. eventually (λx. |f(x)− L| < ε) (at a))

Already we can unify these two definitions by parameterizing over the filter.
(This yields the same definition as the tendsto relation from HOL Light.)

(f −→ L) F = (∀ε > 0. eventually (λx. |f(x)− L| < ε) F) (1)
We express many kinds of limits with (f −→ x) F by instantiating F with
various filters: sequentially for sequences, at a for a function at a point, at-top or
at-bot for a function at ±∞, at-left a or at-right a for one-sided limits.

(xn −−−→ L) = (x −→ L) sequentially
(lim
x→a

f(x) = L) = (f −→ L) (at a)

(lim
x→a+

f(x) = L) = (f −→ L) (at-right a)

(lim
x→−∞

f(x) = L) = (f −→ L) at-bot

Up to now, we generalized how the limit is approached, but we can also generalize
the right-hand side L. First we rewrite (1) using filtermap:

(f −→ L) F = (∀ε > 0. eventually (λy. |y − L| < ε) (filtermap f F))
This says that filtermap f F is eventually in every open neighborhood of L,
which is equivalent to the following:

(f −→ L) F = (filtermap f F ≤ nhds L)
Finally, we can generalize nhds L to an arbitrary filter G and obtain the gener-
alized limit LIM x in F. f x :> G (in Isabelle/HOL also written filterlim f F G).

LIM � in �. � :> � :: (α→ β)→ α filter→ β filter→ B
LIM x in F. f x :> G⇐⇒ filtermap f F ≤ G
(� −→ �) � :: (α→ β)→ (β :: topological-space)→ α filter→ B
(f −→ L) F ⇐⇒ LIM x in F. f x :> nhds L
� −−−→ � :: (N→ α)→ (α :: topological-space)→ B
X −−−→ L ⇐⇒ (X −→ L) sequentially

8

This abstract notion of limit is only based on filters and does not even require
topologies. Now we can express new limits (that are not expressible in HOL
Light’s library), e.g., LIM x in at-bot. −x :> at-top says that −x goes to infinity
as x approaches negative infinity, limx→−∞−x =∞.

For filterlim we can provide a composition rule for convergence. Further rules
about e.g. elementary functions are available for normed vector spaces.

lemma
(LIM x in F1. f x :> F2) =⇒ (LIM x in F2. g x :> F3) =⇒
(LIM x in F1. g (f x) :> F3)

We can prove e.g. ((λx. exp (−1/x)) −→ 0) (at-right 0) from (exp −→ 0) at-bot,
LIM x in at-top. − x :> at-bot, and LIM x in at-right 0. 1/x :> at-top.

On the order topology, a function converges to x iff for all upper and lower
bounds of x the function is eventually in these bounds.

lemma fixes f :: α→ (β :: linorder-topology)
shows (f −→ x) F ⇐⇒ (∀b > x. eventually (λx. f x < b) F) ∧

(∀b < x. eventually (λx. b < f x) F)

Filters vs nets. As an alternative to filters, limits may also be defined using
nets, which generalize sequences. While sequences are indexed by natural num-
bers, a net may be indexed by any directed set. Like filters, nets support an
“eventually” operator: N eventually satisfies P iff ∃x. ∀y ≥ x. P (N(y)).

In terms of formalizing limits and convergence, filters and nets are equally
expressive. However, nets are not as convenient to formalize in HOL. A type
α net of all nets over α does not work; nets require a second parameter type to
allow arbitrary index sets.

4.3 Continuity
Continuity of a function f at a filter F says that the function converges on F
towards its value f x where F converges to x. We use filters to unify continuity
at a point, continuity from left, continuity from right etc. With Lim F (λx. x)
we select the convergence point of the filter F with definite choice. To have a
unique value for x, the domain of the function needs to be a T2-space.

Lim :: α filter→ (α→ β)→ (β :: t2-space)
Lim F f = THE L. (f −→ L) F
continuous :: α filter→ (α :: t2-space→ β :: topological-space)→ B
continuous F f ⇐⇒ (f −→ f (Lim F (λx. x))) F

This is similar to the definition in HOL Light, but generalized to topological
spaces instead of Euclidean spaces.

Often a function needs to be continuous not only at a point, but on a set.
For this we introduce continuous-on. Its domain is not restricted to a T2-space.

continuous-on :: α set→ (α :: topological-space→ β :: topological-space)→ B
continuous-on S f ⇐⇒ ∀x ∈ S. (f −→ f x) (at x within S)

9

4.4 Compactness
An important topological concept is compactness of sets. There are different
characterizations of compactness: sequential compactness, cover compactness
and countable cover compactness. Unfortunately these characterizations are not
equal on each topological space, but we will show in which type classes they are.

First we introduce cover compactness; it does not require any other topolog-
ical concepts besides open sets. A cover of a set U is a set of open sets whose
union is a superset of U . A set U is compact iff for each cover C there exists a
finite subset of C which is also a cover:

compact :: (α :: topological-space) set→ B
compact U ⇐⇒

(∀C. (∀c ∈ C. open c) ∧ U ⊆
⋃
C =⇒ ∃D ⊆ C. finite D ∧ U ⊆

⋃
D)

Topology usually talks about compact spaces U , where the open sets are re-
stricted to the topological space U , which would be Uα in our case. This would
not be very helpful, we would need to define a type for each compact space.
Luckily, cover compactness works also with covers which are proper supersets,
which will be the case when we use it.

Cover compactness can be expressed using filters. A space U is compact iff
for each proper filter on U exists an x ∈ U , s.t. a neighborhood of x is contained
in the filter.

lemma
compact U ⇐⇒

(∀F > ⊥. eventually (λx. x ∈ U) F =⇒ (∃x ∈ U. nhds x u F > ⊥))
Similarly to cover compactness we define countably-compact, where a set

is compact iff for each countable cover exists a finite subcover. Then compact
obviously implies countably-compact, the other direction holds at least for a
second-countable-topology space.

With limits and filters, characterizations of compactness apart from cover or
countable compactness are possible. One often used characterization of compact-
ness is sequential compactness, where for each sequence on the compact space U ,
there exists a subsequence converging in U (a subsequence of X is defined by
selecting increasing indices into X, subseq r states that r is strictly increasing).

seq-compact :: α set→ B
seq-compact U ⇐⇒

(∀X. (∀n. X n ∈ U) =⇒ ∃r. subseq r ∧ ∃x ∈ U. (X ◦ r) −−−→ x)
On a first countable topology sequential equals countable cover compactness.

On a second countable topology sequential, countable cover, and cover compact-
ness are equal.

lemma fixes U :: (α :: first-countable-topology) set
shows countably-compact U ⇐⇒ seq-compact U

lemma fixes U :: (α :: second-countable-topology) set
shows compact U ⇐⇒ seq-compact U
shows compact U ⇐⇒ countably-compact U

10

5 Mathematical Analysis

Analysis works with infinite sequences and limits and develops concepts like dif-
ferentiation and integration. As seen in the previous section, limits have been
formalized generically for topological spaces. The formalization leading to differ-
entiation and integration has largely been ported from Harrison’s formalization
in HOL Light [4] for the type Rn. In this section, we present the generalization
to our hierarchy of type classes. Following Fig. 1, we start with the type classes
for metric spaces and then present the type classes for vector spaces, which
culminate in Euclidean spaces.

5.1 Metric Spaces

Metric spaces are specializations of topological spaces: while topological spaces
talk about nearness, metric spaces require to explicitly give a distance between
elements. This distance then induces a notion of nearness: a set is open iff for
every element in that set, one can give a distance within which every element is
near, i.e. in the open set. The following type class formalizes open sets induced
by a distance:

class open-dist = fixes open :: α set→ B and dist :: α→ α→ R
assumes open U ⇐⇒ (∀x ∈ U. ∃e > 0. ∀y. dist x y < e =⇒ y ∈ U)

If the distance is a metric, it induces a particular topological space, namely a
metric space. It is a first countable space and satisfies the Hausdorff separation
property, i.e. it is actually a T2-space.

class metric-space = open-dist +
assumes dist x y = 0⇐⇒ x = y and dist x y ≤ dist x z + dist y z

instance metric-space ⊆ t2-space, first-countable-topology

One aspect that makes real numbers an interesting metric space is the fact
that they are complete, which means that every sequence where the elements
get arbitrarily close converges. Such a sequence is called Cauchy sequence, and
a metric space is complete iff every Cauchy sequence converges.

Cauchy :: (N→ α :: metric-space)→ B
Cauchy X ⇐⇒ (∀e > 0. ∃M. ∀m,n ≥M. dist (X m) (X n) < e)
complete :: (α :: metric-space) set→ B
complete U ⇐⇒ (∀X. (∀i. X i ∈ U) ∧ Cauchy X =⇒ ∃x ∈ U. X −−−→ x)
class complete-space = metric-space + assumes complete Uα
We have generalized Harrison’s formalization of the Banach fixed point the-

orem to metric spaces and we completed a characterization of compactness on
metric spaces with total boundedness: compact sets are the complete ones that
can, for every e > 0, be covered by a finite number of balls with radius e.

lemma ∀U :: (α :: metric-space) set. compact U ⇐⇒
complete U ∧ (∀e > 0. ∃T. finite T ∧ U ⊆

⋃
t∈T {s | dist s t < e})

11

One instance of complete metric spaces is the type of finite maps α ⇁f
(β :: complete-space): the distance of two finite maps f, g with domains F,G
is given by maxi∈F∪G (dist (f i) (g i)) + (if F = G then 0 else 1). Then
every Cauchy sequence eventually stabilizes at one particular finite domain and
then converges uniformly. Another example is the type of bounded continuous
functions (α :: topological-space) →bc (β :: complete-space). Equipped with the
supremum distance, they form a complete metric space.

Heine-Borel spaces. One can provide the convenient characterization that
compact sets are exactly the bounded and closed sets on a metric space if the
additional assumption that bounded sequences possess a convergent subsequence
holds. We summarize this assumption in a type class, which allows for convenient
access to the characterization and the theorems it implies. Euclidean spaces like
R, C and Rn are examples of instances.

class heine-borel = metric-space +
assumes bounded (

⋃
x{X x}) =⇒ ∃x, r. subseq r ∧ (X ◦ r) −−−→ x

instance heine-borel ⊆ complete-space
lemma ∀U :: (α :: heine-borel) set. compact U ⇐⇒ bounded U ∧ closed U

5.2 Vector Spaces

One aspect that is often abstracted away from products of real numbers is their
property of being a vector space, i.e. a space where addition and scaling can be
performed. Let us present in this section the definition of vector spaces, normed
vector spaces, and how derivatives are generalized for normed vector spaces.

Definition. Usually, a vector space is defined on an Abelian group of vectors
V , which can be scaled with elements of a field F , and where distributive and
compatibility laws need to be satisfied by scaling and addition. The type class
based approach restricts the number of type variables to one; we therefore use
locales (Isabelle’s module system for dealing with parametric theories [3]) to
abstractly reason about vector spaces with arbitrary combinations of F and V
(which may be of different types). We define the type class real-vector for the
common usage of R for the field F : the type class ab-group-add, which formalizes
an Abelian group, provides the operations for addition and additive inverse for
the type of vectors α (subtraction is defined in terms of these operations).

class real-vector = ab-group-add + fixes ·R :: R→ α→ α
assumes r ·R (a+ b) = r ·R a+ r ·R b and (r + q) ·R a = r ·R a+ q ·R a

and r ·R (q ·R a) = (r · q) ·R a and 1 ·R a = a

A generalization of the length of a vector of real numbers is given by the
norm in a vector space. The norm induces a distance in a vector space. Similar

12

to open-dist, which describes how dist induces open sets, we describe here how
the norm induces the distance.

class dist-norm = fixes norm :: α→ R and − :: α→ α→ α
assumes dist x y = norm (x− y)

A normed vector space is then defined as a vector space real-vector together
with the usual assumptions of a separating and positively scalable norm, for
which the triangle equality holds. The distance for the instantiation as metric
space and open sets for the topology are induced by dist-norm and open-dist,
respectively. Then every normed vector space is a metric space.

class real-normed-vector = real-vector + dist-norm + open-dist +
assumes norm x = 0⇐⇒ x = 0 and norm (r ·R x) = |r| · norm x

and norm (x+ y) ≤ norm x+ norm y
instance real-normed-vector ⊆ metric-space

We define a filter to describe that the norm tends to infinity (at-infinity =
filtermap norm at-top). We have lemmas about limits of vector space operations
– for example LIM x in F. f x+ g x :> G for G = nhds L (if f and g converge)
or G = at-infinity (if f or g tend to infinity) – and hence continuity.

Complete normed vector spaces are called Banach spaces; we provide an
extra type class for them. For example bounded continuous functions (α ::
topological-space) →bc (β :: real-normed-vector) equipped with pointwise addi-
tion and scaling form a Banach space.

class banach = complete-space + real-normed-vector

Derivatives. The HOL Light formalization includes derivatives of functions
from Rn to Rm. This derivative is a linear mapping, it is called Fréchet deriva-
tive or total derivative, and its matrix is called the Jacobian matrix. Our type
class based formalization allows us to generalize (in accordance with textbook
mathematics) the notion of Fréchet derivative to arbitrary normed vector spaces
real-normed-vector, where the derivative is a bounded linear approximation. The
limit may be approached from within an arbitrary set s:

bounded-linear :: (α :: real-normed-vector→ β :: real-normed-vector)→ B
bounded-linear f ′ ⇐⇒ (f ′ (x+ y) = f ′ x+ f ′ y ∧ f ′ (a ·R x) = a ·R (f ′ x) ∧

(∃K. ∀x. norm (f ′ x) ≤ K · norm x))

FDERIV � � : � :> � :: (α→ β)→ α→ α set→ (α→ β)
FDERIV f x : s :> f ′ ⇐⇒ (bounded-linear f ′ ∧

((λy. norm (f y − f x− f ′ (y − x))/norm (y − x)) −→ 0) (at x within s))

We have generalized Harrison’s results about derivatives of arithmetic oper-
ations, and the chain rule for differentiation to real-normed-vector spaces.

We provide a set of rules FDERIV-eq-intros that allows to compute deriva-
tives: each of the rules assumes composition of a differentiable function with an

13

additional function and matches a variable to the derivative, which has to be
solved by Isabelle’s rewrite engine. Consider e.g., the following rule where the
first assumption has to be solved by a repeated application of FDERIV-eq-intros
and the second assumption needs to be solved by the simplifier:

lemma
assumes FDERIV f x : s :> f ′ and (λx. r ·R (f ′ x)) = D
shows FDERIV (λx. r ·R (f x)) x : s :> D

Algebraic vector spaces. Further specializations of (normed) vector spaces
are available by including multiplication of vectors for a real-normed-algebra or
real-normed-field. The only instances currently used are real and complex num-
bers R and C so we will not go into more detail here.

5.3 Euclidean Spaces

Another abstraction with geometric intuition is given by an inner product on
normed vector spaces: while the norm can be interpreted as the length of a
vector, the inner product can be used to describe the angle between two vectors
together with their lengths (the cosine of the angle is the inner product divided
by the product of the lengths). dist-norm and open-dist specify the induced metric
and topology. The inner product is used to induce a norm. An inner product is
a commutative bilinear operation • on vectors, for which 0 ≤ x • x holds with
equality iff x = 0.

class real-inner = real-vector + dist-norm + open-dist +
fixes • :: α→ α→ R
assumes norm x =

√
x • x and x • y = y • x

and (x+ y) • z = x • z + y • z and (r ·R x) • y = r ·R (x • y)
and 0 ≤ x • x and x • x = 0⇐⇒ x = 0

instance real-inner ⊆ real-normed-vector

For vector spaces with inner products, there is for example orthogonality of
vectors formalized, i.e. vectors with inner product zero.

Finally, we introduce Euclidean spaces as spaces with inner product and a
finite coordinate basis, that means a finite set of orthogonal vectors of length 1.
In addition, the zero vector is characterized by zero “coordinates” with respect to
the basis. Any Euclidean space is a Banach space with a perfect second countable
topology and satisfies the Heine-Borel property:

class euclidean-space = real-inner +
fixes Basis :: α set
assumes finite Basis and Basis 6= ∅ and (∀u ∈ Basis. x • u = 0)⇐⇒ x = 0

and u ∈ Basis =⇒ v ∈ Basis =⇒ u • v = if u = v then 1 else 0
instance euclidean-space ⊆ perfect-space, second-countable-topology,

banach, heine-borel

14

Linear algebra has been ported from Harrison’s basic formalization, which in-
cludes notions of independence and span of a set of vectors. We prove for example
independence of the basis and that the basis spans the whole Euclidean space.

For functions between euclidean-spaces, we have ported from HOL Light that
the Fréchet derivative can be described as the Jacobian matrix, the mean value
theorem, and Brouwer’s fixed point theorem, which allows to prove that the
derivative of an inverse function is the inverse of the derivative.

Moreover we have ported Harrison’s formalization of the gauge (or Heinstock-
Kurzweil) integral and related properties (linearity, monotone and dominated
convergence, and the fundamental theorem of calculus).

Instances for the type class euclidean-space are real numbers R, complex
numbers C and the Cartesian types Rα where α :: finite (which are isomorphic
to α → R). One advantage of our type class based approach is that we can use
the same formalizations of Euclidean space (e.g. of the integral) for the different
types, whereas in HOL Light, one needs to project e.g. from R1 to R.

5.4 Real Numbers

The type of real numbers R is a special instance of Euclidean spaces; some
parts of our formalization are only available for this case. For a function on real
numbers, one usually thinks of the “derivative” as the slope of the function (or
of the linear approximation), we therefore use the constant DERIV:

DERIV � � :> � :: (R→ R)→ R→ R
DERIV f x :> f ′ ⇐⇒ FDERIV f x : UR :> (λx. f ′ · x)

It turns out that the general formalization of limits with filters allows to
conveniently express e.g. l’Hôpital’s rules in Isabelle/HOL: if the denominator
of a quotient tends to infinity, then the quotient tends to the quotient of the
derivatives of nominator and denominator (if they exist).

lemma
fixes f g :: R→ R
assumes LIM x in at-top. g x :> at-top

and eventually (λx. g′ x 6= 0) at-top
and eventually (λx. DERIV f x :> f ′ x ∧ DERIV g x :> g′ x) at-top
and ((λx. f ′ x/g′ x) −→ L) at-top

shows ((λx. f x/g x) −→ L) at-top

6 Summary

We used the type class mechanism in Isabelle/HOL to formalize a hierarchy of
spaces often used in mathematical analysis: starting with topological spaces, over
metric spaces to Euclidean spaces. As in mathematics, the intention of using a
hierarchical structure is to share definitions and proofs.

15

The reuse occurs for the introduction of extended reals R, the spaces of
bounded continuous functions α →bc β, and finite maps α ⇁f β. The extended
reals R need to exploit the topological type classes, as they do not form a metric
space. The bounded continuous function space α →bc β is a Banach space.
Immler and Hölzl [7] apply them to the Banach fixed point theorem to prove the
existence of unique solutions of ordinary differential equations. Immler [6] uses
finite maps α ⇁f β to construct stochastic processes via a projective limit.

Our approach still has the problem that all operations are defined on Uα. The
usage of finite maps α ⇁f β in [6] illustrates this. We need a metric space whose
dimensionality depends on a variable inside of a proof. Luckily, the disjoint union
of metric spaces can be extended to a metric space. But such a trick is not always
applicable, i.e. this is not possible for normed vector spaces. This can only be
avoided by adding a carrier set to each operation or by extending HOL.

Despite the last point, our work shows that Isabelle’s type class system suf-
fices to describe many abstract structures occurring in mathematical analysis.

Acknowledgements

We want to thank John Harrison and his colleagues for the development of
HOL Light’s multivariate analysis. Further we want to thank Amine Chaieb and
Robert Himmelmann for porting it to Isabelle/HOL.

References

1. Fleuriot, J.D., Paulson, L.C.: Mechanizing nonstandard real analysis. LMS Journal
of Computation and Mathematics 3, 140–190 (2000)

2. Haftmann, F., Wenzel, M.: Constructive Type Classes in Isabelle. In: Altenkirch,
T., McBride, C. (eds.) TYPES 2006, LNCS, vol. 4502, pp. 160–174 (2007)

3. Haftmann, F., Wenzel, M.: Local theory specifications in Isabelle/Isar. In: Berardi,
S., Damiani, F., De’Liguoro, U. (eds.) TYPES 2008, LNCS, vol. 5497 (2009)

4. Harrison, J.: A HOL theory of Euclidean space. In: Hurd, J., Melham, T. (eds.)
TPHOLs 2005. LNCS, vol. 3603, pp. 114–129 (2005)

5. Hölzl, J., Heller, A.: Three chapters of measure theory in Isabelle/HOL. In: van
Eekelen, M.C.J.D., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) Interactive The-
orem Proving (ITP 2011). LNCS, vol. 6898, pp. 135–151 (2011)

6. Immler, F.: Generic construction of probability spaces for paths of stochastic pro-
cesses in Isabelle/HOL. Master’s thesis, TU München (Oct 2012)

7. Immler, F., Hölzl, J.: Numerical analysis of ordinary differential equations in Isa-
belle/HOL. In: Beringer, L., Felty, A. (eds.) Interactive Theorem Proving (ITP
2012), LNCS, vol. 7406, pp. 377–392 (2012)

8. Joshi, K.D.: Introduction to General Topology. John Wiley and Sons (1983)
9. Lester, D.R.: Topology in PVS: continuous mathematics with applications. In:

Second workshop on Automated formal methods. pp. 11–20. AFM ’07 (2007)
10. Spitters, B., van der Weegen, E.: Type classes for mathematics in type theory.

MSCS, ‘Interactive theorem proving and the form. of math.’ 21, 1–31 (2011)

16

