
Numerical Analysis of Ordinary Differential
Equations in Isabelle/HOL

Fabian Immler and Johannes Hölzl?

www.in.tum.de/˜immler www.in.tum.de/˜hoelzl
Institut für Informatik, Technische Universität München

Abstract. Many ordinary differential equations (ODEs) do not have a
closed solution, therefore approximating them is an important problem
in numerical analysis. This work formalizes a method to approximate
solutions of ODEs in Isabelle/HOL.
We formalize initial value problems (IVPs) of ODEs and prove the exis-
tence of a unique solution, i.e. the Picard-Lindelöf theorem. We introduce
generic one-step methods for numerical approximation of the solution
and provide an analysis regarding the local and global error of one-step
methods.
We give an executable specification of the Euler method as an instance
of one-step methods. With user-supplied proofs for bounds of the differ-
ential equation we can prove an explicit bound for the global error. We
use arbitrary-precision floating-point numbers and also handle rounding
errors when we truncate the numbers for efficiency reasons.

Keywords: Formalization of Mathematics, Ordinary differential equa-
tion, Numerical Analysis, One-Step method, Euler method, Isabelle/HOL

1 Introduction

Ordinary differential equations (ODEs) have a lot of important applications.
They are for example used to describe motion or oscillation in Newtonian me-
chanics, the evolution or growth of organisms in biology, or the speed of chemical
reactions.

The Picard-Lindelöf theorem states the existence of a unique solution (under
certain conditions) but unfortunately, many problems do not allow an explicit
closed formula as solution (e.g. the seemingly simple ODE ẋ = x2 − t for initial
values x(t0) = x0). In such cases, one has to content oneself with numerical
methods that give approximations to the solution.

In order to evaluate the quality of an approximate solution (which depends
very much on the concrete problem) you need to choose the parameters of your
numerical method (i.e. step size, precision) wisely. This is where the use of an
interactive theorem prover might be useful: We formalize initial value problems
(IVPs) of ODEs and prove the existence of a unique solution in Isabelle/HOL.
We give an executable specification of the Euler method – a basic numerical
algorithm – and prove the error bound of the approximation.
? Supported by the DFG Graduiertenkolleg 1480 (PUMA)



2 Related Work

When an ODE has a solution representable in a closed form, an approximation
method for this closed form can be used. Muñoz and Lester [12] use rational
interval arithmetic in PVS to efficiently approximate real valued functions in
theorem provers. In addition to basic arithmetic operations they also support
trigonometric functions. Melquiond [11] implements a similar method in Coq.
He also implements interval arithmetic, but uses floating-point numbers and
sophisticated methods to avoid loss of correlation.

An alternative to interval arithmetic is to approximate real numbers by a
sequence of rational numbers. Each element in this sequence has a defined dis-
tance to the exact result. Harrison [5] uses this approach to compute the loga-
rithm. O’Connor [15] approximates real numbers by organizing their completion
of rational numbers in a monad. O’Connor and Spitters [14] use this monadic
construction in order to implement arbitrary approximations of the Riemann
integral. Krebbers and Spitters [9,10] extend this work to use arbitrary-precision
floating-point numbers. Similar to the proof of the existence of the unique so-
lution of an IVP, one can iterate an integral operation in order to approximate
the solution (as suggested in [17]).

Boldo et al. [1] formalize partial differential equations stemming from acoustic
wave equations in Coq. As they analyse partial differential equations they can not
show a general existence or uniqueness theorem. Their particular problem admits
an analytical solution and they simply assume that the solution is unique. They
also show consistency and stability and that in their case convergence follows.
However, they needed to find an analytical formula for the rounding errors.

3 Preliminaries

3.1 Isabelle/HOL

The formalizations presented in this paper are done in the Isabelle/HOL theorem
prover. In this section we give an overview of our syntactic conventions.

The term syntax follows the λ-calculus, i.e. function application is juxtapo-
sition as in f t and function abstraction is written as λx. t. The notation t :: τ
means that t has type τ . Types are built from base types like N (natural num-
bers), R (real numbers), Rn (Euclidean spaces of dimension n), type variables
(α, β, etc.), functions α→ β, sets P(α), and pairs α× β.

Our work builds on the Multivariate_Analysis library which was ported
from Harrison’s Euclidean spaces for HOL-Light [6]. In our formalization the
Euclidean space Rn is not just the function space n → R; it is a type class
denoting a Euclidean space. Rn × Rm, R, and n→ R are in this type class.

We write (a, b) :: α×β for pairs, A×B := {(a, b) | a ∈ A∧b ∈ B} :: P(α×β)
for the Cartesian product of A and B (do not confuse with the product type), ‖x‖
for the norm of x, Br(x) := {y | ‖x− y‖ ≤ r} :: P(Rn) for the closed ball around
x with radius r :: R, and sup A and inf A for the supremum and infimum of A.

2



With ẋ(t) = y we denote that x :: R → Rn has at t the derivative y :: Rn, and
with

∫ b
a
f x dx we denote the integral of f :: Rn → Rm over [a; b]. Hilbert choice

is (ε x. P x), i.e. (∃x. P x) ⇒ P (ε x. P x) holds. In this section xi is the i-th
projection of the vector x. We write [a; b] := {x | ∀i. ai ≤ xi ∧ xi ≤ bi} :: P(Rn)
for hyperrectangles on Euclidean spaces (which are closed intervals on R), and
Rr(x) := {y | ∀i. yi ∈ [xi − r;xi + r]} for hypercubes around x. The predicate
is-interval S := (∀a, b ∈ S. ∀x. (∀i. xi ∈ [ai; bi] ∪ [bi; ai]) ⇒ x ∈ S) accepts
intervals in general, mixtures of open and closed, and infinite ones.

3.2 Arbitrary-Precision Floating-Point Numbers (F)

The previous formalization of arbitrary-precision floating-point numbers in Isa-
belle/HOL [13,7] used pairs of integer exponents e and mantissasm, representing
the real numbers m · 2e. Unfortunately this results in a type which has multiple
representations for the same number, e.g. zero is represented by 0 · 2e for every
e. Therefore the resulting type does not support any interesting type class, like
linear order, commutative groups for addition, etc.

Hence, we introduce a new type F as the dyadic rationals, i.e. all numbers x
which are representable as m · 2e. We have an injective function (·)R :: F → R
and its partially specified inverse (·)F :: R → F. As (non-injective) constructor
we introduce Float m e = (m · 2e)F and declared it as a datatype constructor for
code generation [3]. We lift the arithmetic constants 0, 1, +, −, ·, <, ≤ from the
reals and provide executable equations, e.g. for multiplication:

(Float m1 e1) · (Float m2 e2) = Float (m1 ·m2) (e1 + e2).

3.3 Bounded Continuous Functions

The proof for the existence of a unique solution to an IVP is based on an ap-
plication of the Banach fixed point theorem, which guarantees the existence of
a unique fixed point of a contraction mapping on metric spaces. The textbook-
proof of Walter [18] defines a metric space on continuous functions with a com-
pact domain. As functions in Isabelle/HOL are required to be total, one cannot
simply restrict the domain, hence a slightly different approach is necessary: We
define a type C carrying bounded continuous functions, i.e. functions which are
continuous everywhere and whose values are bounded by a constant:

C = {f :: Rn → Rm | f continuous on Rn ∧ (∃B. ∀t. ‖f t‖ ≤ B)}

The morphisms Rep C : C → (Rn → Rm) and Abs C : (Rn → Rm) → C allow
to use an element of type C as function and to define elements of type C in
terms of a function. We define a norm on C as the supremum of the range and
operations +, −, · pointwise.

‖f‖ := sup {‖Rep C f x‖ | x ∈ Rn}
f + g := Abs C(λx. f x+ g x)
f − g := Abs C(λx. f x− g x)
a · f := Abs C(λx. a · f x)

3



We prove that C is a normed vector space, hence also a metric space. In order
to be able to apply the Banach fixed point theorem we need to show that C is
a complete space, meaning that every Cauchy sequence converges. A function
f : Rn → Rm that is continuous on a compact interval [a; b] is converted to C by
extending the function continuously outside the domain with the help of clamp:

(clamp[a;b] x)i := if xi ≤ ai then ai else (if xi ≥ bi then bi else xi)
ext-cont[a;b] f := Abs C(λx. f (clamp[a;b] x))

The key property we use is that an extended function is continuous every-
where when it was continuous on the interval. Inside the interval the resulting
function takes the same values as the original function:

f continuous on [a; b]⇒ Rep C(ext-cont[a;b]f) continuous on Rn

x ∈ [a; b]⇒ Rep C(ext-cont[a;b]f) x = f x

4 Initial Value Problems

4.1 Definition

An equation in which an unknown function u :: R→ Rn and derivatives of this
function occur is an ODE. ODEs with derivatives of higher order can be reduced
to a first order system, which is why we handle ODEs of first order only. An
ODE together with values t0, x0 for an initial condition u t0 = x0 is an IVP and
can always be written in terms of a right-hand side f which is supposed to be
defined on a domain I ×D (Compare with Figure 1):

u̇ t = f(t, u t) u t0 = x0 ∈ D t0 ∈ I

We define IVPs in Isabelle as a record, which is a named tuple of elements

f :: R× Rn → Rn, t0 :: R, x0 :: Rn, I :: P(R), D :: P(Rn)
ivp = (f, t0, x0, I,D).

For the rest of the paper, we assume an IVP ivp with (t0, x0) ∈ I×D and use
the symbols f, t0, x0, I, andD without further notice as part of this IVP.1 We will
notate modified IVPs in subscripts, for example ivpf :=g for the IVP ivp with the
right-hand side g instead of f . Other components are updated analogously. Later
definitions implicitly depend on ivp and may be updated in a similar fashion.

4.2 Solutions

We capture the notion of a solution to an IVP in the predicate is-solution: A
solution needs to satisfy the initial condition and the derivative has to be given
by f . Apart from that, we need to state explicitly that the potential solution
must not leave the codomain. Mathematicians usually do that implicitly when
declaring f as a function with domain I ×D.

is-solution u := u t0 = x0 ∧ (∀t ∈ I. u̇ t = f(t, u t) ∧ u t ∈ D)

1 In Isabelle/HOL: ivp is fixed as a locale parameter

4



x0

solution
(t, x)

f (t, x)

‖fc‖

t0 TI

b

D

Fig. 1. The solution of an IVP on a rectangular domain and related variables

unique-solution The Picard-Lindelöf theorem states the existence of a unique
solution. We formalize the notion of a unique solution as follows: If two functions
are solutions, they must attain the same values on I. We use Hilbert choice to
obtain solution and relate all upcoming facts about solutions to IVPs to it.

has-solution := (∃u. is-solution u)
solution := (εu. is-solution u)

unique-solution := has-solution ∧ (∀v. is-solution v ⇒ (∀t ∈ I. v t = solution t))

4.3 Combining Initial Value Problems

Working with IVPs in a structured way helped us to implement the proofs in
a maintainable fashion. An important operation is to be able to “connect” two
solutions at a common point. We therefore assume two IVPs ivp1 and ivp2 that
we want to combine to an IVP ivpc:

ivp1 = (f1, t0, x0, [t0; t1], D)
ivp2 = (f2, t1, solutionivp1

t1, [t1; t2], D)
fc := (λ(t, x). if t ≤ t1 then f1(t, x) else f2(t, x))

ivpc := (fc, t0, x0, [t0; t2], D)

Assuming unique solutions for ivp1 and ivp2, we prove a unique solution for ivpc:

f1(t1, solutionivp1
t1) = f2(t1, solutionivp1

t1)⇒
unique-solutionivp1

⇒ unique-solutionivp2
⇒ unique-solutionivpc

4.4 Quantitative Picard-Lindelöf

In this section, we show that certain sets of assumptions (bnd-strip, strip, rect)
imply unique-solution, i.e. the existence of a unique solution and therefore several
variants of the Picard-Lindelöf theorem2. We will present key parts of the proofs
2 In Isabelle/HOL: We show that e.g. rect is a sublocale of unique-solution

5



and how they have been implemented in Isabelle, especially to show how our
choice of formalization helped to structure the proofs. The proofs in this section
are inspired by Walter [18] and follow closely the structure which is given there.
All of the proofs provide concrete results that we use later in the numerical
approximation of IVPs.

Lipschitz continuity is a basic assumption for the Picard-Lindelöf theorem. It
is stronger than continuity: it limits how fast a function can change. A function
g is (globally) Lipschitz continuous on a set S if the slope of the line connecting
any two points on the graph of g is bounded by a constant:

lipschitz S g L := (∀x, y ∈ S. ‖g x− g y‖ ≤ L · ‖x− y‖)

bnd-strip If we choose I = [t0;T ] and D = Rn for the domain of a function f
that is continuous on I ×D and assume a global Lipschitz constant L on D, we
can show the existence of a unique solution, provided that (T − t0) ·L < 1 holds.
We call this set of assumptions bnd-strip:

bnd-strip T L := f continuous on I ×D ∧
(∀t ∈ I. lipschitz D (λx. f(t, x)) L) ∧
I = [t0;T ] ∧D = Rn ∧ (T − t0) · L < 1

Using the fundamental theorem of calculus, any solution to the equalities of
the IVP must also satisfy u t− x0 =

∫ t
t0
f(τ, u τ)dτ for all t in I. This equality

can be seen as an iteration of functions, known as Picard iteration which we
conduct in the space of bounded continuous functions (moving explicitly between
functions R→ Rn and C is the most prominent difference to the textbook proof):

P x := ext-cont[t0;T ]

(
λt. x0 +

∫ t

t0

f
(
τ,Rep C x τ

)
dτ

)
; P :: C → C

In this metric space, we show that P is Lipschitz continuous for the constant
(T − t0) · L. The Lipschitz constant is less than 1 (i.e. (T − t0) · L < 1). This
is a necessary assumption – together with the completeness of C – to apply
the Banach fixed point theorem (from the Multivariate_Analysis library). It
guarantees the existence of a unique fixed point x∗ for the mapping P.

Together with the fundamental theorem of calculus we show that the fixed
point x∗ of P is a solution. Moreover every (continuously extended) solution u
is a fixed point of P

is-solution (Rep C x
∗)

is-solution u⇒ P(ext-cont[t0;T ] u) = ext-cont[t0;T ] u

from which we conclude the existence of a unique solution:

Theorem 1 (Picard-Lindelöf). If f is continuous and Lipschitz continuous
in its second variable and the interval I = [t0;T ] is small enough, then there
exists a unique solution:

bnd-strip T L⇒ unique-solution.

6



strip According to bnd-strip, the size of the interval [t0;T ] in which we have
proven the existence of a unique solution depends on the Lipschitz-constant L.

In strip we drop the restriction T −t0 < 1
L to the size of the interval. This can

be done by splitting the desired interval [t0;T ] into n sub-intervals, such that
T−t0
n is small enough to satisfy the assumptions of bnd-strip. In an inductive

(on n ≥ 1) proof, one has (as hypothesis) the existence of a unique-solution on
[t0;T − 1

n (T − t0)]. The interval [T − 1
n (T − t0);T ] satisfies the assumptions

for bnd-strip – consequently we have a unique-solution there, too. The respective
solutions can then be combined. The argumentation in the textbook proof relies
on geometric intuition when one combines solutions – doing this formally requires
more efforts, but section 4.3 helped in retaining structure in the proofs.

rect In strip, there is the assumption D = Rn for the codomain of the solution.
One might want to restrict this part – e.g. if there is no Lipschitz constant on
the whole codomain – to D = Rb(x0). In this case (which we will call rect) we
continuously extend the right-hand side f outside the rectangle to fc:

fc := ext-cont[t0;T ]×Rb(x0) f ; fc :: C

The textbook also works with a continuous extended function, but we do so
more explicitly with the utilization of ext-cont. We used ext-cont to obtain fc,
hence Rep C fc is continuous on the whole domain I ×Rn. We apply Theorem 1
to obtain the existence of a unique solution for Rep C fc. We show that the
solution does not leave the codomain D – to ensure that f = Rep C fc. For
this, one has to choose a small enough upper bound T of the existence interval
[t0;T ]. This depends on the maximum slope of the solution which is bounded
by ‖fc‖, see Fig. 1. The formal proof centers around an application of the mean
value theorem, this is tedious compared to the geometric intuition given in the
textbook.

rect T b L := f continuous on I ×D ∧ (∀t ∈ I. lipschitz D (λx. f(t, x)) L) ∧
I = [t0;T ] ∧D = Rb(x0) ∧ b ≥ 0 ∧ T ≤ t0 + b/‖fc‖

Under these assumptions, we show that any solution to ivp cannot leave D.

rect T b L⇒ is-solution u⇒ (∀t ∈ I. u t ∈ D)

Having this, we can show that solutionf :=fc is a solution to ivp and that every
other solution to ivp is also a solution to ivpf :=fc . Consequently:

Theorem 2 (Picard-Lindelöf on a restricted domain).

rect T b L⇒ unique-solution

4.5 Qualitative Picard-Lindelöf

In this section, we present a variant of the Picard-Lindelöf theorem (following the
textbook proof of Walter [18] closely), which is mainly of mathematical interest:
One does not get explicit values that could be used to estimate the error in a
numerical approximation – which is what we need in the upcoming sections.

7



local-lipschitz Many functions do not have a global Lipschitz constant L (e.g.
f(t, x) = x2 on R). The weaker assumption of local Lipschitz continuity allows to
prove the existence of a solution in a neighborhood of the initial value. A function
f is locally Lipschitz continuous in its second variable if for every point (t, x)
of the domain, there exists a neighborhood Bε(t, x) inside which there exists a
Lipschitz constant L:

local-lipschitz := ∀(t, x) ∈ I ×D. ∃ε > 0. ∃L.
∀u ∈ Bε(t) ∩ I. lipschitz (λx.f(u, x)) (Bε(x) ∩D) L

open-domain Together with the notion of local Lipschitz continuity, we get a
very general result for the existence of a unique solution if we assume an open
domain. We will use the set of assumptions open-domain to prove the existence
of a unique solution on a maximal existence interval.

open-domain := local-lipschitz ∧ open I ∧ open D

Under these assumptions, we construct a small enough rectangle inside a
neighborhood of the initial values that is inside the domain and possesses a
Lipschitz-constant. From this we can conclude

∃T > t0. [t0;T ] ⊆ I ∧ unique-solutionI:=[t0;T ].

We define Φ (similar to the textbook, but more explicit) to be the set of all
solutions to ivp and upper bounds of their existence intervals starting from t0:

Φ := {(u, T ) | t0 < T ∧ [t0;T ] ⊆ I ∧ is-solutionI:=[t0;T ] u}

For this set, we can show that all solutions u, v in Φ take the same values
on the intersection of their existence intervals. We do so by falsely assuming
that they differ at a point t1 (u(t1) 6= v(t1)) and showing that there has to be a
maximal point tm at which u and v are equal. Then, however, one can use the
previous theorem about the existence of a unique solution in a neighborhood of
tm, to show that the two solutions have to be equal at larger points than tm,
contradicting its maximality.

One can then define a solution on the interval J :=
⋃

(u,T )∈Φ[t0;T ] for which
unique-solutionI:=J holds. Additionally, for every other intervalK for which there
exists a solution, K is a subset of J and the solution is only a restriction. From
a mathematical point of view this is an important result, stating the existence
of a maximal existence interval for the unique solution:

Theorem 3 (Picard-Lindelöf on an open domain, maximal existence
interval).

unique-solutionI:=J ∧
∀K ⊆ I. is-interval K ⇒ inf K = t0 ⇒ has-solutionI:=K ⇒

(K ⊆ J ∧ (∀t ∈ K. solutionI:=K t = solutionI:=J t))

8



5 One-step methods

The aim of this paper is to approximate solutions of IVPs with the Euler method.
The Euler method is a one-step method: it approximates a function (the solution)
in discrete steps, each step operating exclusively on the results of one previous
step. For one-step methods in general, one can give assumptions under which
the method works correctly – where the error of the approximation goes to zero
with the step size.

The methodology is as follows (cf. Bornemann [2]): If the error in one step
goes to zero with the step size, the one-step method is called consistent. One
can show that every consistent one-step method is convergent: the global error
– the error after a series of steps – goes to zero with the step size, too.

For efficiency reasons, we want to limit the precision of our calculations –
which causes rounding errors. The effect of small errors in the execution of a
one-step method is studied with the notion of stability: The error between the
ideal and the perturbed one-step method goes to zero with the step size.

We first give a formal definition of one-step methods, formalize the notions of
consistency, convergence and stability. We prove that consistent one-step meth-
ods are convergent and stable. We are going to use these definitions and results
in the upcoming section to show that the Euler method is consistent and can
therefore be used to approximate IVPs.

5.1 Definition

Following the textbook [2], we want to approximate the solution u : R → Rn
at discrete values given by ∆ :: N → R with ∀j. ∆ j ≤ ∆ (j + 1). We notate
∆j := ∆ j, denote by hj := ∆j+1 −∆j the step size, and by hmax := maxj hj
its maximum.

The approximation should be given by a one-step method (or grid function)
gf such that gf j ≈ u ∆j . One-step methods use for the approximation at ∆j+1

only the information of the previous point at ∆j . A one-step method gf on a grid
∆ for a starting value x0 can therefore be defined recursively. It is characterized
by an increment function ψ which gives the slope of the connection (the so called
discrete evolution Ψ) between two successive points (depending on the step size
h and the position (t, x) of the previous point):

h, t :: R; x, x0 :: Rn; ψ, Ψψ :: R→ R→ Rn → Rn

Ψψ h t x := x+ h · ψ h t x

gf ∆ ψ x0 0 := x0

gf ∆ ψ x0 (j + 1) := Ψψ hj ∆j (gf ∆ ψ x0 j)

5.2 Consistency implies Convergence

We now describe up to which extent one-step methods can be used to approx-
imate an arbitrary function u : R → Rn on an interval I := [∆0;T ]. We first

9



formalize the notion of consistency (bounding the local error), then summarize
a set of required assumptions in the predicate convergent from which we show
that one-step methods converge.

The error in one step (the local error) is given by ‖u (t+ h)− Ψψ h t (u t)‖
at a point (t, u t) for a step size h. We (as well as the textbook) call a one-step
method consistent with u of order p if the local error is in O(hp+1). This means
that there exists a constant B such that the local error is less than B · hp+1:

consistent u B p ψ :=(
∀t ∈ [∆0;T ]. ∀h ∈ [0;T − t]. ‖u (t+ h)− Ψψ h t (u t)‖ ≤ B · hp+1

)
convergent As in the proof of the Picard-Lindelöf theorem, we need the no-
tion of Lipschitz continuity: The textbook defines a cylindrical neighborhood
of radius r around u in which the increment function ψ needs to be Lipschitz
continuous. Moreover the increment function is assumed to be consistent with
u. The definition of convergent summarizes the assumptions required to show
convergence.

convergent u B p ψ r L := consistent u B p ψ ∧ p > 0 ∧B ≥ 0 ∧ L ≥ 0 ∧(
∀t ∈ [∆0;T ]. ∀h ∈ [0;T − t].

lipschitz (Br(u t)) (ψ h t) L
)

We need to give a constant C such that the global error is less than C · hp.
This constant depends on B and L and the length S of the interval I. We need
this constant as a bound in several upcoming proofs, hence we define it here as
boundS B L for the sake of readability. We want to limit the step size depending
on this constant, the order of consistency, and the radius r of the neighborhood
with a Lipschitz constant, hence we introduce step-bnd B L p r.

boundS B L := B
L ·
(
eL·S+1 − 1

)
step-bnd B L p r := p

√
‖r‖

boundT−∆0
B L

Given a one-step method gf satisfying the assumptions of convergent, we show
(inductively on the number of the step j) for a small enough step size that gf is
convergent: the global error ‖u ∆j − gf ∆ ψ x0 j ‖ is in O(hp).

Theorem 4 (Convergence of One-Step methods).

convergent u B p ψ r L⇒ hmax ≤ step-bnd B L p r ⇒
(∀j. ∆j ≤ T ⇒ ‖u ∆j − gf ∆ ψ x0 j ‖ ≤ boundT−∆0

B L · hmaxp)

5.3 Stability

Since we want to limit the precision of our calculations for reasons of efficiency
we need to take the sensitivity against (rounding) errors into account. This is

10



captured by the notion of stability. For a one-step method defined by ψ, we want
to study the effect of small perturbations in every step.

For this, we introduce (as in Reinhardt [16]) an error function s and an initial
error s0 and study the perturbed one-step method defined by ψs

ψs h t x := ψ h t x+ s h t x

stable Small perturbations do not affect the results of a convergent one-step
method too much if we assume a convergent ideal one-step method defined by ψ,
a sufficiently small step size, and errors in the order of the step size (the textbook
states the theorem for ‘sufficiently small‘ errors, to obtain an explicit bound we
basically make the perturbations part of the error we allow for consistency). We
summarize this set of assumptions in the definition of stable:

stable u B p ψ r L s s0 := convergent u B p ψ r L ∧

hmax ≤ step-bnd B L p
r

2
∧ s0 ≤ bound0 B L · hmaxp ∧

(∀j. ‖s hj ∆j (gf ∆ ψs (x0 + s0) j)‖ ≤ B · hjp)

Under these assumptions, we can show that the error between the distorted
gf ∆ ψs (x0 + s0) and the ideal one-step method gf ∆ ψ x0 is in O(hp):

Theorem 5 (Stability of one-step methods).

stable u B p ψ r L s s0 ⇒
∀j. ∆j ≤ T ⇒ ‖gf ∆ ψ x0 j − gf ∆ ψs (x0 + s0) j‖ ≤ boundT−∆0 B L · hmaxp

The textbook proof contains an induction quite similar to the one for the
proof of convergence, and in fact, we managed to generalize the common part
(the accumulation of an error) which we could re-use in both proofs.

6 Euler method

In this section, we define a simple one-step method, namely the Euler method.
We show that the Euler method applied to an IVP is consistent and therefore
convergent. For reasons of efficiency, we introduce an approximate implementa-
tion of the Euler method on floating point numbers and show that it is stable.
We conclude that the approximate Euler method works correctly.

6.1 Definitions

We now assume an IVP ivp with domain I ×D := [∆0;T ]×Rb+r(x0) and take
the assumptions from rect T (b + r) L. We want to approximate the solution
of this IVP with the Euler method on a grid ∆. The Euler method connects a
point (t, x) with its subsequent point by a line with the slope given by f(t, x) –
independently of the step size. Notice that in contrast to the previous sections,

11



we restrict ourselves and the Euler-method to the univariate case (f :: R×R→
R, solution :: R → R): The proof requires Taylor series expansion, which – in
Isabelle/HOL – is only available for the one-dimensional case.

ψfeuler h t x := f(t, x)

eulerf ∆ x0 j := gf ∆ ψfeuler x0 j; eulerf :: (N→ R)→ R→ N→ R

6.2 Euler on R

Recall Theorem 4 about the convergence of one step methods and its set of
assumptions convergent. The Euler method is clearly a one-step method. In order
to prove convergence for the Euler method, we need to show that it is Lipschitz
continuous and consistent with the solution.

In rect T (b + r) L we have the assumption that f is Lipschitz continuous,
hence the Euler method is Lipschitz continuous, too.

We show consistency with the solution with a Taylor series expansion of the
solution around t, which requires explicit bounds for the derivative of f . Recall
that ‖fc‖ (as defined in the assumptions of rect) is a bound for the values of f
on the domain I ×D. In deriv-bnd we summarize the fact that f ′ is the (total)
derivative of f and that at every point in I ×D, the derivative in every possible
direction the solution might take (bounded by ‖fc‖) is bounded by B. It follows
that under these assumptions the Euler method is consistent with the solution.

deriv-bnd f ′ B := (∀y ∈ I ×D. ∀dx. ‖dx‖ ≤ ‖fc‖ ⇒ f ′ y (1, dx) ≤ 2 ·B)

deriv-bnd f ′ B ⇒ consistent solution B 1 ψfeuler

The Euler method being consistent and Lipschitz continuous, we can conclude
with Theorem 4 that the Euler method converges:

Theorem 6 (Convergence of Euler). When Picard-Lindelöf guarantees a
unique solution on a rectangular domain (rect T (b + r) L) and with explicit
bounds on the derivative of f (deriv-bnd f ′ B), the Euler method converges for
a small enough step size (hmax ≤ step-bnd B L 1 r) against the solution:

convergent solution B 1 ψeuler r L

6.3 Euler on F

We decided to add an implementation of the Euler method on arbitrary-precision
floats for efficiency reasons. We define the approximate Euler method ẽuler as a
one-step method operating on floating point numbers. As an increment function,
we work with an approximation f̃ of f in the sense that (f̃

(
t̃, x̃
)
)R approximates

f((t̃)R, (x̃)R) for t̃, x̃ ∈ F. The error of the approximation may stem from trun-
cating the floating point numbers for reasons of efficiency.

We show that the approximate Euler method works correctly as follows: From
Theorem 6, we have a bound on the error between the result of the ideal Euler

12



method and the solution (convergence). We apply Theorem 5 to obtain a bound
on the error between the ideal and the approximate Euler method (stability). We
summarize the required assumptions in euler-rounded: We need rect and deriv-bnd
to show convergence. In addition to that, we need bounds on the error of the
approximations x̃0 and f̃ to obtain stability.

euler-rounded b r L f ′ B := rect T (b+ r) L ∧ deriv-bnd f ′ B ∧

t0 = (∆̃0)R ∧ ‖x0 − (x̃0)R‖ ≤ bound0 B L · (h̃0)R ∧

(∀j x̃. ‖f((∆̃j)R, (x̃)R)− (f̃(∆̃j , x̃))R‖ ≤ B · (h̃j)R
One subtle point is the fact that Theorem 5 applies only to one-step meth-

ods on real numbers. We therefore need to instantiate the theorem with the
perturbed increment function fs(t, x) := (f̃ ((t)F, (x)F))R and show that the re-
sult of eulerfs equals (ẽulerf̃ )R, which is easy since eulerfs operates exclusively
on real numbers representable as floating point numbers.

Having convergence of the ideal Euler method (depending on the step size)
and stability of the approximate Euler method (depending on the rounding er-
ror), we can approximate IVPs: The execution of ẽulerf̃ on a grid ∆̃ results in
an error compared to solution that can be made arbitrarily small by choosing
smaller step sizes.

Theorem 7 (Convergence of the approximate Euler method on F).
When Picard-Lindelöf guarantees a unique solution on a rectangular domain
(rect T (b+r) L) and with explicit bounds on the derivative of f and appropriate
error bounds for the approximations (x̃0)R and (f̃)R (euler-rounded b r L f ′ B),
the approximate Euler method converges for a small enough step size
(h̃max ≤ step-bnd B L 1 r

2) against the solution (for every j with (∆̃j)R ≤ T ):∥∥∥solution (∆̃j)R − (ẽulerf̃ ∆̃ x̃0 j)R

∥∥∥ ≤ 2 · boundT−t0 B L · (h̃max)R

7 Example: u̇ t = u2 − t

As a simple case-study, we chose the ODE u̇ t = (u t)2− t which does not admit
a closed formula as solution. In this section we show how we compute u 1

2 . First
we introduce an IVP depending on the user supplied values t̃0, x̃0, T̃ , b, r:

f (t, x) := x2 − t
I ×D := [(t̃0)R; (T̃ )R]× Bb+r((x̃0)R)
(t0, x0) := ((t̃0)R, (x̃0)R)

We then analyze this IVP: We provide the Lipschitz-constant L and the
boundary B. We prove a bound of ‖fc‖, and the (total) derivative ḟ of f :

L := 2 ·max ‖(x̃0)R − (b+ r)‖ ‖(x̃0)R + (b+ r)‖
B := 2 ·max ‖(x̃0)R − b‖ ‖(x̃0)R + b‖+ 1

2

‖fc‖ ≤ (max ‖(x̃0)R − b‖ ‖(x̃0)R + b‖)2 +max ‖(t̃0)R‖ ‖(T̃ )R‖
ḟ (t, x) (dt, dx) = 2 · x · dx− dt

13



The Euler method ẽulerf̃ is defined with f̃(t̃, x̃) := roundp(x̃2 − t̃) on an
equidistant grid ∆̃j := t̃0 + j · h̃. For a fast computation we use the rounding
operator roundp x which reduces the precision of x, i.e. ‖roundp x− x‖ ≤ 2−p.

We now set the parameters to

t̃0 := 0, x̃0 := 0, b := 1, r := 2−8, T := 1, h̃ := 2−14, and p := 14.

The error to the solution is bounded by 0.001 due to Theorem 7. We discharge
all assumptions with the approximation method [7], as all parameters are fixed.

Theorem 8 (Approximation of the solution to u̇ t = u2 − t).

∀j ≤ 213.
∥∥∥solution (∆̃j)R − ẽulerf̃ ∆̃ x̃0 j

∥∥∥ ≤ 0.001

The execution of ẽulerf̃ ∆̃ x̃0 213 in the target language SML (where we
represent floating point numbers as pairs of integers) returns −33140952 ·2−28 ≈
−0.123 . . . and takes about 2 seconds on a CoreTM2 Duo (E8335) and 2.93 GHz.
We put everything together and obtain a result that is correct for two digits:

u
1

2
= solution (∆̃213)R ∈ [−0.124 . . . ;−0.122 . . .]

This proposition bypassed the LCF kernel of Isabelle since we trust code gener-
ation for the approximation method and the evaluation of ẽulerf̃ , but it could
(at least in principle) be proved by Isabelle’s simplifier.

In order to evaluate the overestimations that stem from the proofs, it is
worth noticing that one gets a result inside the same bounds with the choice
of 2−11 instead of 2−14 for stepsize and rounding error. In an experiment with
u̇ t = u (i.e. u t := et), the actual error is more than a factor 22 smaller than the
estimated error. Notice also that for our choice of parameters, 1

2 is the maximum
argument where our theorems guarantee correctness.

8 Conclusion and Discussion

We formalized the Picard-Lindelöf theorem to show the existence of a unique
solution for IVPs in the multivariate case (R→ Rn). We conducted an analysis of
the numerical errors of one-step methods that approximate arbitrary functions in
R→ Rn, which we could use to show that an ideal Euler method eulerf (without
rounding errors) approximates the solution (but only in the univariate case,
since a multivariate version of Taylor series expansion has not been formalized
in Isabelle/HOL yet). Analysis of stability for one-step methods yielded stability
for the Euler method: small errors f − f̃ do not affect the global behaviour of
an approximate Euler method ẽulerf̃ . See these relations summarized in Fig. 2.

Most of the theorems we presented require a large set of assumptions, where
the use of locales [4] helped us structuring the theories (compare Fig. 3): We
presented the basic Picard-Lindelöf theorem under assumptions with restrictions

14



f

f

f̃

solution

eulerf

ẽulerf̃

Picard-Lindelöf

euler

ẽuler

= convergent ≈

≈ stable ≈

Fig. 2. Relationship between the
differential f and the different ap-
proximations

rect deriv-bnd

euler euler-rounded

stable

consistent

convergent

ẽulerf̃ ≈ solution

Fig. 3. Context hierarchy

on the size of the interval bnd-strip, then dropped this restriction in strip. More
realistic applications require restricting the codomain of the solution in rect and a
variant of the Picard-Lindelöf in the context of open domains of open-domain is of
mathematical interest. We showed that consistent one step methods (consistent)
are convergent (convergent) and (with additional assumptions) stable (stable)
and showed these properties for the Euler method. We could conclude that an
approximate Euler method converges against the solution.

The Euler method is rarely used in real applications but was relatively easy
to analyze. However, the results from one-step methods apply to the widely used
Runge-Kutta methods, therefore one can profit from our developments when one
implements Runge-Kutta methods of higher order (e.g. the method of Heun or
the “classical” Runge-Kutta method) where one only needs to show consistency
in order to obtain results about convergence.

In order to obtain explicit bounds for the error of the Euler method in a con-
crete application, we rely on code generation. The user needs to provide proofs
that the concrete application satisfies the assumptions of the contexts in which
the error bounds hold. To some extent, an analysis of the differential equation is
also necessary when one wants to evaluate the quality of the approximation ob-
tained by some arbitrary numerical method. It might still be desirable to provide
more automatization e.g. computing the bounds of the derivative or for deriving
a minimum step size automatically.

Our development is available in the AFP [8] and consists of a total of 5020
lines, 1715 for C and the floating-point numbers, 1696 for IVPs, 1217 for one-step
methods, and 392 for the example.

References

1. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Formal
proof of a wave equation resolution scheme: The method error. In: Kaufmann, M.,

15



Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 147–162 (2010)
2. Bornemann, V., Deuflhard, P.: Scientific computing with ordinary differential equa-

tions (2002)
3. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:

Blume, M., Kobayashi, N., Vidal, G. (eds.) Functional and Logic Programming
(FLOPS 2010). LNCS, vol. 6009, pp. 103–117 (2010)

4. Haftmann, F., Wenzel, M.: Local theory specifications in Isabelle/Isar. In: Berardi,
S., Damiani, F., de’Liguoro, U. (eds.) TYPES 2008, LNCS, vol. 5497 (2009)

5. Harrison, J.: Theorem Proving with the Real Numbers. Ph.D. thesis (1996)
6. Harrison, J.: A HOL theory of Euclidean space. In: Hurd, J., Melham, T. (eds.)

Theorem Proving in Higher Order Logics, 18th International Conference, TPHOLs
2005. Lecture Notes in Computer Science, vol. 3603, pp. 114–129 (2005)

7. Hölzl, J.: Proving inequalities over reals with computation in Isabelle/HOL. In:
Reis, G.D., Théry, L. (eds.) Programming Languages for Mechanized Mathematics
Systems (ACM SIGSAM PLMMS’09). pp. 38–45 (2009)

8. Immler, F., Hölzl, J.: Ordinary Differential Equations. Archive of Formal Proofs
(Apr 2012), http://afp.sf.net/entries/Ordinary_Differential_Equations.shtml,
Formal proof development

9. Krebbers, R., Spitters, B.: Computer certified efficient exact reals in Coq. In: Con-
ference on Intelligent Computer Mathematics (CICM 2011). LNAI, vol. 6824, pp.
90–103 (2011)

10. Krebbers, R., Spitters, B.: Type classes for efficient exact real arithmetic in Coq.
CoRR abs/1106.3448 (2011)

11. Melquiond, G.: Proving bounds on real-valued functions with computations. In:
Armando, A., Baumgartner, P., Dowek, G. (eds.) International Joint Conference
on Automated Reasoning (IJCAR’08). LNAI, vol. 5195, pp. 2–17 (2008)

12. Muñoz, C., Lester, D.: Real number calculations and theorem proving. In: Hurd,
J., Melham, T. (eds.) Theorem Proving in Higher Order Logics (TPHOLs 2005).
LNCS, vol. 3603, pp. 195–210 (2005)

13. Obua, S.: Flyspeck II: The Basic Linear Programs. Ph.D. thesis, München (2008)
14. O’Connor, R., Spitters, B.: A computer verified, monadic, functional implementa-

tion of the integral. Theoretical Computer Science 411(37), 3386–3402 (2010)
15. O’Connor, R.: Certified exact transcendental real number computation in Coq.

In: Mohamed, O., Muñoz, C., Tahar, S. (eds.) Theorem Proving in Higher Order
Logics (TPHOLs’08), LNCS, vol. 5170, pp. 246–261 (2008)

16. Reinhardt, H.J.: Numerik gewöhnlicher Differentialgleichungen. de Gruyter (2008)
17. Spitters, B.: Numerical integration in Coq (Nov 2010), Mathematics, Algorithms,

and Proofs (MAP’2010),
www.unirioja.es/dptos/dmc/MAP2010/Slides/Slides/talkSpittersMAP2010.pdf

18. Walter, W.: Ordinary Differential Equations. Springer, 1 edn. (1998)

16


