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Abstract. Ordinary differential equations (ODEs) are ubiquitous when
modeling continuous dynamics. Classical numerical methods compute
approximations of the solution, however without any guarantees on the
quality of the approximation. Nevertheless, methods have been developed
that are supposed to compute enclosures of the solution.

In this paper, we demonstrate that enclosures of the solution can be
verified with a high level of rigor: We implement a functional algorithm
that computes enclosures of solutions of ODEs in the interactive theorem
prover Isabelle/HOL, where we formally verify (and have mechanically
checked) the safety of the enclosures against the existing theory of ODEs
in Isabelle/HOL.

Our algorithm works with dyadic rational numbers with statically fixed
precision and is based on the well-known Euler method. We abstract
discretization and round-off errors in the domain of affine forms. Code
can be extracted from the verified algorithm and experiments indicate
that the extracted code exhibits reasonable efficiency.

Keywords: Numerical Analysis, Ordinary Differential Equation, Theo-
rem Proving, Interactive Theorem Proving

1 Introduction

Ordinary differential equations (ODEs) are used to model a vast variety of dy-
namical systems. In many cases there is no closed form for the solution, but one
can resort to numerical approximations. They are usually given by “traditional”
one-step methods like the Euler method or the more general family of Runge-
Kutta methods, which approximate the solution in several discrete steps in time.
However, especially in safety-critical applications, approximations are too vague
in that they provide no rigorous connection to the solution.

To establish such a connection, in the area of “guaranteed integration”, dif-
ferent approaches have been proposed. They have in common that they do not
compute with approximate values, but with sets enclosing the solution. The
most basic way to compute with sets is interval arithmetic, which suffers from
the wrapping effect (i.e., large overapproximations when enclosing rotated boxes

* Supported by the DFG Graduiertenkolleg 1480 (PUMA)



in a box) and cannot track dependencies between variables. The proposed ap-
proaches differ in the data structures that represent the sets as well as the
algorithms that are used to compute them.

A well-studied family of algorithms is based on on Taylor series expansions
and computing with interval arithmetic, surveyed e.g., by Nedialkov [18], and
implemented in tools like AWA [I5], ADIODES [25], VNODE [I7], VNODE-
LP[19]. Those overcome the wrapping effect with QR-decomposition. A differ-
ent approach is based on Taylor models, which suffer from neither the wrapping
effect nor the dependency problem and which were studied by Makino and Berz
and implemented to solve ODEs in COSY [I]. A survey of Taylor model based
methods is given by Neher et al. [20]. Tucker [26] uses the “traditional” Eu-
ler method with interval arithmetic and uses interval splitting to overcome the
wrapping effect. Bouissou et al. [3] also use “traditional” methods, but they rep-
resent sets with affine forms [6] to overcome the wrapping effect and track linear
dependencies.

Most of the aforementioned “guaranteed” methods have in common that the
proofs that they actually compute enclosures of the solution are carried out on a
relatively high level, without formal connection to the source code. Nedialkov [19]
has been worried about this gap and responds with implementing VNODE-LP
using literate programming, such that the correctness can be verified via code
review by a human expert. The operations used in COSY are (manually) proved
correct in [24] — but only for the basic operations on Taylor models, without a
connection to ODEs.

Our work aims at narrowing the gap between implementation and proof
even more by allowing for mechanical software verification. We formalize both
proof and algorithm in an interactive theorem prover, namely Isabelle [22]. The
theorem prover provides a formal language to express mathematical formulas and
allows to prove theorems in a rigorous calculus, where every reasoning step is
checked by the system. Isabelle/HOL implements higher-order logic, a subset of
which can be seen as a functional programming language. Isabelle/HOL therefore
allows to extract code from the formal specifications.

Our approach is to give a specification of a guaranteed method for ODEs in
Isabelle/HOL. We verify that the computed enclosures are correct with respect
to a formalization of ODEs in Isabelle/HOL. Our specified method is executable,
we therefore extract code and compute enclosures for some examples.

The method we chose to formalize is based on the approach taken by Bouis-
sou et al. [3]: they essentially let “traditional” methods operate on sets repre-
sented by affine forms. We liked the flexibility of their framework — the fact
that it can be extended with different “traditional” methods, which are all well-
studied and each known to be suited for particular kinds of ODEs. Moreover, we
had already formalized a (rudimentary) numerical analysis of the Euler method.

1.1 Contributions

We contribute a formal and mechanically checked verification of a set-based
Euler method. We therefore provide a formalization of affine forms, a formal



specification of the Euler method based on affine forms and a formal correctness
proof with respect to the formalized mathematical specification of ODEs. In the
course, we discovered subtle issues in informal proofs given for other set-based
methods (see also Section .

Note that every definition and theorem we explicitly display in the following
text possesses a formally proved and mechanically checked counterpart. The
development is available in the Archive of Formal Proofs [I4/12].

1.2 Related Work

In addition to the already mentioned work on guaranteed integration, we would
like to point to related work on differential equations in theorem provers: Spit-
ters and Makarov [16] use the constructive proof of the existence of a unique
solution to calculate solutions of ODEs in Coq. The local nature of the proof
restricts their computations to short existence intervals. Boldo et al. [2] approxi-
mate the solution of one particular partial differential equation in Coq. A formal
development of Taylor models is given by Brisebarre et al. [4]. Platzer [23] uses
differential invariants to reason about dynamical systems in a proof assistant.

1.3 Overview

Let us start with a high-level overview of our “tool”: We present the required
mathematical background and the formalization thereof in Section 2] Formally
verified approximations of ODEs will be obtained as follows:

1. The user needs to input a term f for the right-hand side of the ODE.

2. A term for the derivative Df of f can then be obtained automatically via
symbolic differentiation (Section [2.3).

3. Given f and Df, we provide a method to automatically obtain affine arith-
metic approximations f and f’ of f and Df. (Section

4. Now f, Df f , and f’ can be shown to satisfy the assumptions for numerical
approximations with the Euler method (Section .

5. Code for the Euler method can then be extracted, compiled and executed in
order to obtain a list of enclosures. Theorem [ states the correctness of the
method.

We conducted experiments with some concrete ODEs in Section

2 Background

We work with the interactive theorem prover Isabelle [22], inside the logic Isa-
belle/HOL. Isabelle is an LCF-style theorem prover, i.e., every proposition passes
through a small, trusted inference kernel.

In the following, we present the background theory we use in our formal-
ization and the notation we use in this paper to refer to it. As a subset of



Isabelle/HOL can be seen as a functional programming language, the notation
we use in this presentation is inspired by functional programming languages:
for a term t we write ¢t :: « if ¢ is of type a. We write function application
juxtaposition as in f ¢ and function abstraction Az. t. Types are built from
base types like N, Z, R, R™ or via type constructors like o = 3 for functions
from type a to B, a x [ for pairs, or « set respectively « list for sets respec-
tively lists with elements of type «. = binds weaker than x, which binds weaker
than other type constructors. a option denotes the option type with construc-
tors None and Some. For operations in the option monad we use Haskell-style
do-notation. For A :: aset, B :: 3 set we denote with A — B the function set
{f|Va € A. faec B}. We make use of standard functional programming func-
tions like map, fold, filter, fst, snd and write appending (concatenating) lists with
_ @ ::alist= alist = alist

We also make use of Isabelle’s code generator [§]: it performs a (mostly
syntactic) translation from equations in the logic to functions in functional pro-
gramming languages like SML, OCaml, Haskell, or Scala. Worth noticing for our
application is that we make use of a shallow embedding of integers Z, i.e., op-
erations on type Z are mapped to operations of the arbitrary-precision integers
provided by the respective target languages.

In the remainder of this section, we present the notation of the mathematical
formalization upon which we base our work.

2.1 Real Numbers

Isabelle/HOL provides a theory of real numbers R, which does not directly allow
for code generation. We formalize all of our algorithms in terms of real numbers,
but in order to obtain an executable formalization, we make use of data refine-
ment [7] and represent the type R with dyadic rational numbers:

We introduce (based on Obua’s [21] construction of Floating point numbers)
a “pseudo-constructor” Float :: Z = 7Z = R for dyadic rational numbers, i.e.,
Float m e = m - 2°. Isabelle’s code generator can be instructed to translate R as
a type with elements constructed by Float in the target language. Operations on
real numbers then need to be given in terms of pattern matching on Float, e.g.,
(Float my ey1) - (Float ma e3) = Float (my - m2) (e1 + e2).

For efficiency reasons we need to restrict the precision, i.e., the size of the
mantissa, during computations. We therefore use trunct and trunc™ with the
property trunc” px < x < trunct p x. Moreover, trunct and trunc make sure
that the absolute value of the returned mantissa is smaller than 2. When we
speak of precision, we usually denote it with a value p corresponding to the
length of the mantissa as described above. We also give a function round, for
which if round p x = (y, e), then y is rounded with precision p and |z — y| < e.

Some operations like division or transcendental functions cannot be com-
puted exactly on dyadic rational numbers, for them we use approximating func-
tions with precision p like div™ and divt with div™ p z y < % <divtpzy.



2.2 Euclidean Space

Our work is based on Isabelle/HOL’s Multivariate Analysis [I1], which is an
extension and generalization of a port of Harrison’s formalization of Euclidean
space in HOL Light [9].

Euclidean spaces R™ are formalized as types a with a set of base vectors
Basis :: aeset with the vector space operations addition + :: & = o = «, scalar
multiplication - :: R = o = « and inner product e :: &« = o = R. Products
of real numbers are Euclidean spaces, we therefore write for example R x R
also as R?, and we have e.g., (Basis :: R%Zset) = {(1,0),(0,1)}. Every element
of the Euclidean space can be written as a sum of base vectors scaled with the
respective coordinates. Coordinates can be extracted by taking the inner product
with a base vector, so it holds that x =Y, _p . (z i) - 1.

For a,b :: R™ write a < b if for all base vectors i € Basis, a ®i < bei. Then
the interval [a;b] = {z | a < 2 Az < b} is the smallest box containing a and b.
We also define the absolute value |a| :: R™ componentwise, i.e., for base vectors
i, |a] @i =la eil.

2.3 Derivatives

The (ordinary) derivative of a function g :: R = R™ is written ¢’ :: R = R"™.
For f :: R™ = R™, we denote by Df :: R" = R™ = R™ the Frechet (or
total) derivative of f. Df x is the linear approximation of f at x (which can
be represented with the Jacobian matrix). We use the notation for derivatives
under the implicit assumption that they exist (which we prove or assume in the
formal development).

Isabelle/HOL provides a set of rules allowing to symbolically compute deriva-
tives. Together with the rewrite engine of Isabelle/HOL, this allows to automat-
ically obtain a term for the derivative Df of f.

2.4 Notes on Taylor Series Expansion in Euclidean Space

In the course of formally proving the correctness of our implementation, we even
identified a subtle issue in the presentation of Bouissou et al. [3]: They develop
(in Equation 8) a Taylor series expansion of a function y, where they assume the
existence of a £ € [t;t+h] with y(t+h) = y(t) + b, 2oy@ () + %y(’““)(@.
Such a & only exists for functions y :: R = R. In the multivariate case, y :: R =
R™ can be seen as a family of functions y; :: R = R such that there exists a
family of & € [t;t + h] for the remainders of y;. The remainder of y can then
be written as r := (yl(k) &i)i<n. But this element need not be a member of the
set A = {y®)(t). t € [t;t + h]}, which they overapproximate as enclosure of the
remainder in their Equation 12. However, r is an element of any box enclosing
A and they use such a box enclosure in their implementation, which keeps their
method safe. Consider e.g., y(t) = (t2 +t,t3) as example illustrating the issue.



2.5 Ordinary Differential Equations

In the following, we repeat standard results about ODEs, most of which have
been formalized in [I3]. A homogeneous first order ODE is an equation z’ ¢ =
f(z t) with an unknown function x :: R = R", the independent variable ¢ is
usually denoted as time. We treat only this kind of ODE, as inhomogeneous ( f
may depend on ¢) and higher-order ODEs (only the higher derivatives of x are
part of the ODE) can be reduced to the simple case. Constraining the ODE to
an initial value problem (IVP) is crucial for the existence of a unique solution.

Definition 1 (Initial Value Problem). An initial value problem ivp is a
named tuple of elements f :: R™ = R", tg = R, g : R?, T :: Rset, X :: R" set
ivp = (fat(),anTaX)‘

Definition 2 (Solution). A function x :: R = R"™ is a solution to an initial
value problem ivp, if ' t = f(xt) and 2’ t € X for allt € T and if x ty = .

If X is bounded, the metric space of bounded continuous functions T — X
is complete. Then the Banach fixed point theorem guarantees the existence of
a unique fixed point of the Picard operator P :: (R = R") = (R = R") with
Pxt=uwxy+ j;to f (x s)ds, if P is an endomorphism, i.e., maps functions from
T — X ontoT — X.

Theorem 3 (Existence of a unique solution). For T = [to;t1], if f s Lip-
schitz continuous (i.e., AL. Va1,29 € X. ||f w1 — f x| < L - ||z1 — 22]|) on a
compact set X and if P is an endomorphism on T — X, then there exists a
unique solution sol of the IVP ivp on T.

Let us now present some results about numerical approximations of so-
lutions. The Euler method naively approximates the solution with line seg-
ments in the direction given by the right-hand side of the ODE (z(t + h) €
xt+h-(f (zt)+ O(h?)). Since the error in one step goes to zero with the
stepsize h, the method is called consistent. We represent errors explicitly as
sets, hence we give a formulation of consistency in terms of sets. We formalize
enclosures of functions with the function set X — Y.

Theorem 4 (Consistency of Euler method). Assume a compact interval
[t;t + h], a conver and compact set X :: R" set, and a function x € T — X
with derivative ' t = f(x t). Further assume that f is bounded by F (f €
X — F) and that the derivative Df is bounded by a box [Dmin; Dmax] (V2 €
X. Yy € F. Df © y € [Dmin; Dmax)). Then the Euler method is consistent:

g(t+h)—zt+h (flzt) e [%Z-Dmm;%-Dmx}

The proof makes use of the Taylor series expansion of x, which is why we
assume Df bounded by a box. This ensures that the remainder (which is repre-
sented with Df) is contained in that box (cf. the discussion in Section [2.4)).



3 Affine Arithmetic

We are going to adapt the Euler method to compute with sets in order to obtain
a guaranteed method. We represent sets by affine forms (as described in detail
in [6]) 2o+ Y., i - x;, where xg is called the center, the x; are coeflicients and
g; formal variables or noise symbols. The set represented by such an affine form
is the set of all elements given by the form when the ¢; range in [—1;1].

‘We represent sets « set with affine forms of type « affine. In order to stay close
to an efficient executable representation, we chose « affine = N x a x (N x ) list.
For a tuple (m, zg, zs), xg :: R™ is the center, s :: (N x R") list a list of indexed
coefficients (distinct and sorted by the first component) where every index is
smaller than the degree m. We write affine forms either with capital letters X, Y
or explicitly as tuples. elem :: R™ affine = (N = R) = R"” returns an element
given by a valuation for the formal variables: elem (m,zo,25) € = 3_(; 1yeqs(€ 1)
x. coeff :: (N x R™) list == N = R™ returns the coefficient with a given index if
it exists in the list and zero otherwise. The function Affine :: R™ affine = R" set
returns the set represented by an affine form: it is the set of all elements obtained
via “valid” valuations: Affine X = {elem X e| e € N — [-1;1]}.

An important notion is that of the joint range of affine forms. Affine forms
representing the same set may have different dependencies: ¢; and ¢; represent
the same set [—1;1], but the subtraction €; — €; represents either {0} or [—2;2],
depending on whether i = j. More general, when reasoning about some function
f taking two arguments z € Affine X and y € AffineY, f is surely called only for
arguments (z,y) € (Affine X) x (AffineY). But the Cartesian product discards
dependencies that the affine forms are actually supposed to track: respecting the
dependencies, we can be more precise and state that (z,y) is contained in the
set {(z,y) |x=elem X eNy =-elemY e ANe € N — [—1; 1]}, which is called the
joint range of X and Y. We generalize this to an arbitrary number of arguments
by defining the joint range for lists of affine forms via Affines :: « affinelist =
« list set, where we have Affines xs = {map (Az. elemz e) zs | e € N — [-1;1]}.

The maximum deviation of an affine form (m,zp,xs) is the sum of the
absolute values of all coefficients, we denote it by rad xs :: R™. We overap-
proximate rad with precision p by safely rounding all additions: rad® p zs =
fold (\(i,z) eg. trunc™ p (|x| + eg)) zs 0. This can be used to obtain a bounding
box for an affine form with box p (m,zo,xs) = [xg — rad™ p xs; 29 + rad” p s,
where we have Affine X C boxp X.

To convert boxes to affine forms, distinct noise symbols are needed for every
coordinate. [a;b] is represented by the affine form %2 +3, o o e;- (552 04) 1),
for which we write affine-of-ivl a b.

The Minkowski sum A @ B = {a + b. a € Affine AANDb € Affine B} discards
dependencies between A and B and is used for example to add some uncertainty
B to a given affine form A. It can easily be implemented by adding the coefficients
of B as coefficients with fresh indices to A.

We define binary coefficientwise operations that accumulate round-off er-
rors via round-binop :: N = (a = a = o) = (N x «a)list = (N x a) list =
(N x «) list x . round-binop can be implemented efficiently thanks to the fact



that lists of coefficients are sorted. For round-binop p [ xs ys = (zs,err),
the first essential property is that round-binop distributes a binary function
f rounded with precision p over the coefficients: for all i :: N, coeff zs i =
fst (round p (f (coeff xs i) (coeff ys i))). The second property states that
err overapproximates the sum of the absolute values of all rounding errors:
Y icn |coeff zs i — f (coeff xs i) (coeffys i)| < err.

3.1 Reification of Expressions

The aim when using affine arithmetic is to replace operations in an expression
on real numbers or Euclidean space by the corresponding operations on affine
forms. This is similar to work by Holzl [10] on approximations using interval
arithmetic in Isabelle/HOL. This requires an explicit representation of expres-
sions. A technique called reification allows to transform a term into an explicit
data structure for expressions, evaluated by an interpretation function.

Let us start with expressions in real arithmetic aexp, for which we define an
inductive datatype like in Figure [1} Elements of this datatype are interpreted
recursively using the function [_J],s for an environment vs :: R™ list as given in
Figure 2] The environment contains the list of free variables of the expression.
They are of type R™ because ultimately we want to approximate functions R =
R™. Vari b allows to take the component indicated by a base vector b of the i-th
element of the environment.

aexp = Add aexp aexp
| Mult aexp aexp  [Add a b]ys = [a]vs + [b]vs

. = AddE
(Minusaexp  [Multat], = [al,. bl P AdoE P o
| Inverse aexp [Minus a]vs = —[a]vs P
| Num R [Inverse a]vs = 1/[a]vs [AdE = y]vs = []os + [V]vs
| Var N N [[Num T]]us =17r [[Sca/ea b]]’us _ [[a]]vs b

[Variblos = (vs!i)eb

Fig. 1. Inductive data Fig. 3. Datatype and interpre-
type of arithmetic ex- Fig. 2. Recursive interpreta- tation of Euclidean space ex-
pressions tion of arithmetic expressions pressions

We make use of the automated method for reification by Chaieb [5], which,
given a set of equations for the interpretation function and a term, proves a
reification theorem. With the equations for [ ] from above and the fact that
To = x @ by when by is the second base vector, we get e.g., for the term xo + 3
the theorem x5 + 3 = [Add (Var 0 by) (Num 3)] 5.

For functions between Euclidean spaces, every expression A(z1,...,Z5).
(fix1 -+ Tpyeooyfm ®1 -+ Xp) can be rewritten as Ax. (fy (xeby) - (z e
bp)) b1+ -+ (fmn (xe@by) -+ (xeby)) - by,. We therefore define expression and
interpretation for expressions on Euclidean space as given in Figure [3|



To give an example, the expression (2, x1) is first rewritten to 2-(1,0)+(zeb; )-
(0,1) and then reified to [AddE (Scale (Num 2) (1,0)) (Scale (Var0 1) (0,b1))] ]

3.2 Approximation of Elementary Operations

For affine forms on real numbers, we support the arithmetic operations addition,
multiplication, and their respective inverses. Note that, in essence, we work with
a fixed, finite precision p, which means that we have to take rounding errors into
account. The general approach is to round all “ideal” operations and summarize
the encountered round-off errors in a fresh formal variable.

Let us illustrate this for the example of addition: We calculate the new cen-
ter z with rounding error e, the coefficientwise addition zs of zs and ys with
accumulated error e; and add a new coefficient (overapproximating the errors
e1 and eg) for the formal variable with fresh index [ to the resulting affine form.

add-affine p (n, xg,xs) (m,yo,ys) =
let (z,e1) = round p (zo + yo);
(zs,€2) = round-binop p (A\x y. x + y) xs ys;
e = trunct p (e1 + e3);
l=max nm

in (1+1,z25Q[(l,e)])

Correctness of operations on affine forms states that if the arguments are
members of affine sets, then the result from the “ideal” operation is in the affine
set resulting from the operation on affine forms. Moreover the dependencies of
the formal variables stay intact. In the example of addition:

Theorem 5 (Correctness of Addition). If [z,y] € Affines [X,Y],
then [x,y,z + y] € Affines [X,Y, add-affinep X Y]

We proved similar correctness theorems for multiplication mult-affine. multi-
plicative inverse inverse-affine and unary minus, where we guided our implemen-
tation by the descriptions in [6].

3.3 Approximation of Expressions

The explicit representation of arithmetic expressions due to reification and the
approximations of elementary operations allow to recursively define an approx-
imation function approx :: N = aexp = R" affinelist = N = R affine option in
affine arithmetic. Below we give addition as example but refrain from a presen-
tation of further cases. In order not to introduce wrong dependencies, [ is used as
index of a fresh formal variable and needs to be threaded through the recursive
calls. Approximation is performed inside the option monad, in order to handle
failures like e.g., approximating the inverse of an affine form that contains zero.

approxp (Add a b) vs | =
do (n,xzq,xs) < approxp a vs
(m,yo,ys) < approxpbuvsn
Some (add-affine p (n, xo, zs) (M, Yo, ys))



Approximation approx :: N = eexp = R" affinelist = N = R" affine of
expressions in Fuclidean space is just coefficientwise scaling and addition.

Correctness for the approximation of an expression in Euclidean space can
then be stated as follows: If the input variables vs are in the joint range of the
affine forms V.S, then the approximated affine set is in the joint range with the
interpreted expression. (We write z#xs for prepending the element x to the list
xs)

Theorem 6 (Correctness of approximation). If vs € Affines V.S, the maz-
imum degree of the affine forms in VS is d, and approx p expr V.S d = Some X,
then [expr],s#vs € X#V S

3.4 Summarizing Noise Symbols

During longer computations, the approximations due to affine arithmetic (and
rounding errors) will add more and more noise symbols to the affine form, which
impairs performance in the long run. The number of noise symbols can be re-
duced by summarizing (or condensing) several noise symbols into a new one.
This process obviously discards the correlation mediated by the summarized
noise symbols, so a trade-off needs to be found.

Following [6], we summarize all symbols with an absolute value smaller than
a given fraction r (the summarization threshold) of the maximum deviation of
the affine form. Note that we compare the coefficients in Euclidean space, that
means when we summarize a noise symbol, the dependencies in all coordinates
are small. We then extend the affine form consisting of the large coefficients ys
with a box enclosing all small deviations zs:

summarize p r (n, xo, s) =
let rad = rad™ p xs
let ys = filter (\x. x > r - rad) xs
zs = filter (Ax. = x > r-rad) xs
in (n,z0,ys) ® affine-of-ivl (—rad™ p zs) (rad™ p zs)

The necessary correctness theorem states that summarization returns a safe
overapproximation: Affine X C Affine (summarizep r X).

4 Approximation of ODEs

Our algorithm approximates ODEs in a series of discrete steps in time. We start
the section by presenting the implementation and proofs for a single step, then
show the extension to a series of steps.

The formalization of our algorithm and the correctness proof are generic in
the ODE f, its derivative Df and respective approximations in affine arithmetic
f , f’ , which we will assume for the remainder of this section:

fuR*=R"

f = N = R = R" affine = R" affine option
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Df :R" = R" = R"
f’ N = R = R"” affine = R" affine = R" affine option
Va. x € Affine X — fpt X = Some F — [z, f x] € Affines [X, F]
Va y. [z,y] € Affines [X,Y] — f'pt X Y = Some F/ —»
[z,y, Df x y] € Affines [X,Y, F’]
f has continuous derivative Df

4.1 Euler Step

ODEs are approximated in a series of discrete steps. A step consists of two
phases, one for certification and one for approximation. In the first phase, we
certify the existence of a unique solution and obtain an a-priori bound on the
solution. In the second phase we use this a-priori bound to compute a tighter
enclosure with a set-based Euler method. Let us assume a step size h > 0 at
time tg :: R. Further assume that the step starts at value xq :: R™, for which we
assume an affine approximation Xy with xo € Affine Xg.

Certification The idea is to certify the existence of a unique solution according
to Theorem [3] One prerequisite is to show that the operator P used for Picard
iteration is an endomorphism, which can be shown by finding a post fixed point.
Like Bouissou [3], we use the set-based overapproximation @ X = Xo+h-(f X)
of the operator P. For a box X with z t € X for ¢ € [to;to + h], it holds that

Pa:t:xo—i—j;tof(xs)dseQX.

We define a function Q using affine arithmetic to overapproximate ). Then
we iterate Q p r, starting with box p Xg, until we find a post fixed point. That
means when we encounter boxes B and C such that Q p r C = Some B and
B C C. Since @ is an overapproximation of P, it follows that for all ¢t € T and
reT — C, Pxte C, which certifies that P is an endomorphism on T"— C.

Now that we have verified P as an endomorphism, a unique solution exists
according to Theorem (3| if f is Lipschitz continuous, which follows from our
assumption that f is continuously differentiable.

The results of the certification phase can be summarized in the following
theorem, which guarantees the existence of a unique solution for the current
step size h and also provides an a-priori bound for the evolution of the solution:

Theorem 7 (Certification of Solution). If the iteration of Q started with X,
yields a C with Q pr C = Some B and B C C, then the ODE f has a unique
solution sol on [to;tg + h] for the initial value (to,xo). Moreover, the solution is
bounded by sol € [to;to + h] — (Affine C).

Note that it is possible that the iteration of ) does not reach a fixed point
if the step size is too large — one can then repeat the phase with a smaller step
size. It is also possible to accelerate the iteration with some sort of widening.
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Approximation The approximation phase aims to compute a tighter enclosure
for the solution, making use of the a-priori enclosure from the previous phase.
For this phase we assume that the previous phase returned for some step size
h :: R an a-priori bound C :: R™ affine.

We work with a set-based Euler method and therefore use Theorem [ which
bounds the method error of one Euler step. We first overapproximate the Euler
step ¢z := & + h - (f ) using an affine arithmetic function ¥ and add to the
resulting affine form the uncertainty given by the method error.

For the overapproximation of the Euler step v zq, recall the assumption
o € Xo. We can therefore overapproximate v o with ’(/AJ pr Xo.

Concerning the method error, we need to bound Df. We know from the a-
priori bound of Theorem [7] that for all t € [to;to + h], sol t € Affine C. We can
further bound f on C' with f, i.e., with F := fp r C. With the assumption that
Df is bounded by f’, we have for all [x,y] in Affines [C, F] that [x,y, Df z y] €
Affine [C, F, f’ p r C F|. If we set [Dmin; Dmax] = box p (f’ pr C F), then
Theorem [f] allows to prove that the solution is safely enclosed by an Euler step
in affine arithmetic 1[1 pr Xo, extended with the method error of one Euler step:

~

Theorem 8. sol (tg + h) € Affine (Y pr Xo @ [%2 - Diin; h;  Dax])

4.2 Euler Series

We denote with the term “local” a solution certified by the fact that the certifi-
cation phase of one Euler step succeeded. Taking the enclosure from the approx-
imation phase (which is usually smaller, and can be made arbitrarily small with
the step size) as initial enclosure X for a subsequent Euler step and iterating the
process, one gets a series of enclosures for local solutions. The respective step
sizes are determined by the certification phase of the Euler step. Inductively,
one can connect the proofs for the existence of local solutions to one theorem
stating the existence of a unique global solution. The a-priori bounds can be
used as bounds over local time intervals, and tight bounds can be given for dis-
crete points in time. During computation, we accumulate several of the interval
bounds and give back a list of time intervals, together with an enclosure of the
solution on that interval and a tight enclosure at the end of the interval. We
define the function that iterates and accumulates local steps as euler-series p r
for precision p and summarizing threshold r (Section, the final theorem then
looks as follows:

Theorem 9. If euler-series p r to Xg returns (t1,xs), then there exists a unique
solution on [to;t1]. Moreover for all (t;,C;,t;, X;) € s, the solution is bounded
by C; resp. X;: for allt € [t;;t;], solt € Affine C; and solt; € Affine X;;.

5 Experiments

Our experiments do not aim for a thorough comparison of different approaches
for guaranteed integration — this can and should be done for unverified code. We

12



# method steps  time error y error z

1 euler-series 50 277 13-10% 280s 1.6-10° 8.0-1072
2 euler-series 50 277 52-10% 810s 2.5-10716.0-1073
3 euler-series 50 277 220 - 10° 3100 s 6.8 - 1072 1.6 - 1073
4 Heun [3] 220 - 10° 141 s 7-107°
5 ode45 [3] 8-10° 15s 1.7-1071

Table 1. Experimental comparison for the oil reservoir problem (time interval [0; 50])

5L -

-10 4

15 |-N N
20 -
t
-25 1 1 1 L L -2
346 348 35 352 354 356 358 0 05 1 15 2 25 3 35 4
Fig. 4. Enclosures for z in the oil reser- Fig.5. Enclosures for = in f(t,z) =
voir problem x? — t with (to,z0) = (0,0.71875)

compare experiments using our extracted code with the experimental results of
Bouissou et al. [3]. They run their experiments on a machine with two processors
running with 2.33GHz and 2GB RAM, we perform our computations on an
Intel® Core™2 Duo CPU T7700 at 2.40GHz and 4GB RAM.

One example they give is the oil reservoir problem f(y, z) = (2, 2% — ﬁ)
for initial values (yo,20) = (10,0). In Figure |4} we plot the enclosures from the
list of verified bounds output by euler-series 50 2~7 when extracted to SML
(4500 lines of generated code) and compiled with PolyML 5.5.1. The values are
therefore verified in the sense of Theorem [9] We experience similar behavior like
Bouissou et al. [3] in that it is hard to integrate over the time around ¢ = 35,
i.e., very small step sizes are used there. But also note that the method gains
accuracy later on. Note that this example is not trivial, as other packages like
VNODE cannot integrate this ODE.

In Table [} we cite experimental results from Bouissou and compare with
our experiments. We give the number of steps, the time needed to integrate
the problem and the error of the approximation at the end of the integration.
Comparing experiments with comparable step sizes, namely lines 1 and 5 resp.
3 and 4, it can be seen that our method takes roughly a factor of 20 more time.
Note that the method of Heun needs twice as many evaluations of f in one
step and ode4b even more. So interpret the figures just as a rough estimate,
suggesting that our method is currently between one or two orders of magnitude
slower than comparable tools. We believe that this is still reasonable as e.g., our
method does not use native floating point numbers, where we lose a large factor.
With comparable step sizes our method is less accurate, which is not surprising,
as the Euler method converges linearly with the step size, the method of Heun
quadratic and ode45 cubic.
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A second example we would like to give is a comparison with the numerical
analysis given in previous work [13]. There we integrated the ODE f(t,z) = 22—t
on the time interval t € [0;0.5] with an error 2-10~2. We were unable to certify the
existence of a solution for a longer time span. Now (with the same computational
effort of around 2 seconds), we can give enclosures for the solution on an eight
times larger time span t € [0;4] with a smaller error of 3-107% at ¢ = 0.5, which
we consider a significant improvement.

6 Conclusion

The experiments indicate that our method exhibits reasonable performance in
comparison to unverified tools and great advances when compared to previous
approaches to a formally verified treatment of ODEs.

Nevertheless, there is still room for improvement: our method could be com-
piled for native IEEE floating point numbers, a formalization thereof is already
available in Isabelle/HOL [27]. Moreover we have not yet implemented approxi-
mations of e.g., trigonometric functions, square root or the exponential function
in affine arithmetic. In order to achieve competitive accuracy, methods in addi-
tion to the Euler method need to be implemented and proved consistent.
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