Tool Presentation: Isabelle/HOL for
Reachability Analysis of Continuous Systems

Fabian Immler*

Institut fir Informatik, Technische Universitat Miinchen
immler@in.tum.de

Abstract. We present a tool for reachability analysis of continuous sys-
tems based on affine arithmetic and Runge-Kutta methods. The distinc-
tive feature of our tool is its verification in the interactive theorem prover
Isabelle/HOL: the algorithm is guaranteed to compute safe overapprox-
imations, taking into account all round-off and discretization errors.

Keywords: Continuous System, Ordinary Differential Equation, Rigor-
ous Numerics, Zonotope, Affine Arithmetic, Interactive Theorem Proving

1 Introduction

There exist several tools that perform reachability analysis of continuous sys-
tems, in this paper, we present a prototype of a tool that is special because
of its trustworthiness. Why is trustworthiness an issue? Of course, the model
might not represent the real world accurately and we cannot capture errors like
that. But there are complex algorithms used and it is easy to get subtle de-
tails wrong, signs of expressions, indices, round-off errors. So what the analyzer
outputs might not be faithful to the mathematical ideas behind the tool.

Here we present a tool that is verified with the interactive theorem prover
Isabelle/HOL [I1]. HOL stands for higher order logic, a logic in which one can
formalize mathematics. Proofs for propositions are mechanically checked by Isa-
belle/HOL — it is therefore a theorem prover. However coming up with proofs
needs to be guided by the user — therefore interactive.

Higher order logic can also be seen as a functional programming language.
Our tool performs reachability analysis (inspired by Bouissou et al. [2]) using
affine arithmetic [3] and Runge-Kutta methods. It is implemented as a functional
program in Isabelle/HOL. Because of the fact that mathematics — and in this
case ODEs — are formalized in the same logic, we are able to conduct a proof of
correctness and have it checked by Isabelle/HOL.

The advantage of this approach is that it yields highly trusted code and one
can be quite certain that reachable sets in the algorithm are safe enclosures for
the abstract notion of solution to the ODE. This advantage comes at the cost
of an implementation that is not as optimized as comparable tools. The tool is

* Supported by the DFG RTG 1480 (PUMA)



also harder to modify or experiment with, because one needs to change not only
the code but also the corresponding formal proofs. But of course this prevents
the introduction of bugs.

2 Isabelle/HOL

We start with giving some background on interactive theorem proving with Isa-
belle/HOL and the formalization of mathematics therein. Isabelle is an LCF
style theorem prover: theorems are an abstract datatype, new instances of which
can only be constructed from existing theorems or axioms via a set of primitive
inference rules (like modus ponens) implemented in a small kernel.

2.1 A Short Introduction to Interactive Theorem Proving

The most popular logic in Isabelle is higher order logic, Isabelle/HOL. It can
be seen as a functional programming language, i.e. one can for example define
datatypes like the type nat of natural numbers N with 0 and a successor function
Suc.

datatype nat = 0 | Suc nat

Recursive functions like add can be defined via pattern matching:
fun add where
"add 0y = y"
| "add (Suc x) y = Suc (add x y)"

The logic part allows to state propositions like commutativity of addition
lemma "add x y = add y x"

and give the system hints to prove that proposition by induction on the first
argument x,

apply (induct x)
where the system (and this is an example of interaction) requires to prove two

subgoals, corresponding to the basis and the inductive step:
goal (2 subgoals):
1. add O y = add y 0
2. Ax. add x y = add y x —
add (Suc x) y = add y (Suc x)

For both cases it is helpful to first prove recursive equations in the second argu-

ment of add, which is a straightforward induction:
lemma [simp]:
"add x 0 = x"
"add x (Suc y) = Suc (add x y)"
by (induct x) simp_all

Then the system can solve both subgoals automatically using
by simp_all

Behind the scenes, the first subgoal is solved by rewriting add 0 y with
the defining equation and add y 0 with the just now provided equation for 0
in the second argument. Similarly for the second subgoal: The system rewrites



add (Suc x) y to Suc (add y x) by using the defining equation and then Suc
(add y %) to Suc (add x y) with the induction hypothesis. This equals the
right hand side of the proof obligation after rewriting (the right hand side) with
the equation for Suc in the second argument.

2.2 Formalization of Mathematics in Isabelle/HOL

Now you can imagine that integers can be formalized using natural numbers
Z = «(N x N) with a(n,m) = n — m, rational numbers as quotients of integers
Q = a(Z x Z) with a(i,j) = % and real numbers with (Cauchy) sequences of
rational numbers: R = a(N — Q) with a(z) = lim;_, x(7).

All of those types are equipped with operations (like add for natural numbers)
and proofs of properties about them (like commutativity of addition). Note that
not all of the operations need to be defined as functional programs, they often
can not even be: there are uncountably many real numbers.

Real numbers have been used to develop a theory of multivariate analysis
(as ported from Harrison’s work in HOL Light [4]), with e.g. differentiation and
integration. This theory has been used to formalize ODEs [9].

2.3 Rigorous Numerical Methods in Isabelle/HOL

There are different formalizations for numerical computations, a library for in-
terval arithmetic [5] (including approximations of transcendental functions) and
affine arithmetic, including verified algorithms for geometric zonotope/hyperplane
intersection [7]. Those numerical methods are guaranteed in the sense that re-
spective operations in e.g. affine arithmetic always enclose the “real” quantities.
For example, addition & of affine forms comes with a correctness theorem like
(z,y) € a(A,B) = z+y € a(A® B), where (A4, B) is the joint range
{(Ap + Zf e;A;, By + Zf €iB;) | Vi. &; € [-1;1]} of the affine forms given by
generators (A;)i<x and (B;)i<k.

Crucial for performance is to restrict the precision of the generators. We
therefore explicitly round all newly computed generators and account for the
round-off errors safely with additional generators. To avoid that the set of gen-
erators grows too large, generators below a given threshold are summarized in a
small box.

3 Features

We implemented a tool for computing enclosures of ODEs (inspired by Bouis-
sou et al. [2]), based on zonotopes and Runge-Kutta methods, with step-size
adaptation: we currently use a second-order Runge-Kutta method, where the
discretization error is safely overapproximated during the analysis. This requires
an explicit bound for the error, which can be used to adapt the step size such
that the error is within given tolerances.



We extended this approach by including splitting of reachable sets and re-
duction at hyperplanes perpendicular to an axis such that the flow is transversal
to that hyperplane as described in our recent work [8]. These hyperplanes are
what Bak [I] calls “pseudo-invariants”. Our algorithm comes up with pseudo-
invariants dynamically and decides after the intersection whether it is worth
performing the reduction or continue with the “original” sets.

This optimization often helps to improve the precision of the analysis, how-
ever it is efficient only in low dimensions: in general an n-dimensional reachable
set is reduced to an n — 1 dimensional set.

4 Formal Guarantees

Our tool has been verified with respect to our formalization of ODEs. The kind
of formal guarantees we obtain from that will be presented in the following. We
consider systems with dynamics given by an autonomous ODE #(t) = f(x(t))
with f : R™ — R™. Correctness of the algorithm is formalized with the help of
two functions, flow and existence_ivl. existence_iv1(x) gives the maximal
existence interval of a solution ¢ with initial condition ¢(0) = z. For this initial
condition, flow(x, t) is defined as the solution ¢(¢) at time ¢ (provided t €
existence_ivl(x).

The core of our reachability analysis is a Runge-Kutta step post(X, h),
which returns a tuple (Y, Z), where Y encloses the solution on the interval [0; A]
and Z encloses the solution at time instant h.

post(X,h) = (Y, Z2) =

Vr € X. h € existence ivl(z)Aflow(z,h) € ZAVtE € [0;h]. flow(z,h) € Y

Of course, post also needs to certify that the chosen step size h is contained
in the existence_ivl. It does so (just like Bouissou et al. [2]) by proving that
the Picard iteration is contracting, which in turn is certified by iterating an
overapproximation of the Picard operator (for possible solutions with graph in
[0; h] x X for some set X) until exhibiting a post fixed point. If no such post
fixed point is found, then the system retries for a smaller time step.

5 Setup

Setting the tool up for concrete computations involves some manual interaction,
which could mostly be automatized, but it shows which proof obligations need
to be discharged in order to obtain a provably correct analysis.

Here we sketch the setup for the example of the van-der-Pol system (&, ) =
fa,y) with f(z,y) = (y,(1 —2®)y — x)

In order to estimate the discretization error of the Runge-Kutta method, one
needs to provide derivatives. The second line is the right hand side of the van
der Pol system. In the third line, there is a schematic variable 7D, it can be



instantiated during the proof. Here it will be instantiated with a term form the
map Df |, given by the Jacobian matrix of f at x. This task can be completed
automatically using the set of rules for derivatives, derivative_eq_intros.

schematic_lemma vanderpol_fderiv:
"((A(x::real, y::real). (y, vy * (1 + - x*x) + - X))
has_derivative (case x of (x, y) = A(dx, dy). ?D x y dx dy))
(at x within X)"
by (auto intro!: derivative_eq_intros)

The same proofs need to be done for higher derivatives. Then affine arithmetic
overapproximations can be derived as follows:

‘approximate_affine vanderpol "A(x::real, y::real). (y, y * (1 + - x*x) + - x)"

As a result, one gets a function vanderpol operating on zonotopes, together
with a correctness theorem.

After instantiating the framework with the right-hand side f, its derivatives
and its corresponding functions in affine arithmetic, code can be generated (code
generation will be explained in more detail in the following section) for SML.
The compiled code outputs tracing information that can be used for plotting the
reachable sets (at discretization points like in Figure [1| or at the time-intervals
inbetween, Figure .

It is also possible to compile and run the program from within Isabelle.
Here we trust code generation as an “oracle”. For the following example, we
start the reachability analysis from the line segment [1.25;1.75] x {2.25} and
stop when returning to the line y = 2.25. The result vanderpol_limit’ is
therefore the Poincaré map and returns within an interval [24759730456532176 -
2754:26264698040279640 - 27°4] x {2.25} (Sctn(n, c) indicates that the result
can be intersected with the hyperplane {z | (x,n) = c}):

lemma vdpl_res: "vanderpol_limit' = dRETURN

([(FloatR 24759730456532176 (- 54), FloatR 20266198323167228 (- 53))1,
[(FloatR 26264698040279640 (- 54), FloatR 20266198323167236 (- 53))1,

[Sctn (FloatR @ O, FloatR (- 1) 0) (FloatR (- 9) (- 2))])"
by eval

The returning interval is contained in the initial set, so after unfolding some
definitions, we can prove a theorem that the inital set is forward invariant under
the flow of the differential equation.

lemma vanderpol_flow_invar:

"JE. E C {(1.25, 2.25) .. (1.75, 2.25)} A
(vxe{(1l.25, 2.25) .. (1.75, 2.25)}.
Jt>0. t € vanderpol.existence_ivl x A
vanderpol.flow x t € E)"



\
h

L

J

%/// //ﬂ"’ /
7 —
///

2

/)
g1

3 I I
2,5 -2 -1.5 -1 -0,5 4 0.5 1 1.5 2

Fig. 1. Reachable sets for the van der Pol system at discretization points

If one were to formalize more concepts from dynamical systems this result
could be used to prove the existence of a stable limit cycle for the van-der-Pol
system.

6 Execution

The following sections give a bit more detail into the process of code generation
and gives some indications on the performance of the compiled code.

Data Refinement In order to render the specified algorithms executable, data
needs to be represented in an executable way. This applies in particular because
our algorithms, in particular the generators of the zonotopes, are specified in
terms of real numbers. We use data refinement: we replace the abstract type of
real numbers with some concrete, executable representation in a sound way. The
concrete representation is (arbitrary precision) floating point numbers m2¢ for
(unbounded) integers m, e € Z.

To this end we introduce a constructor Real defined as Real(m,e) = m2¢ in
the logic. Then Real is used as uninterpreted function in the target language.
Operations on real numbers are then reduced to the respective operations on the
concrete representation as floating point numbers, e.g. Real (m1, el) * Real
(m2, e2) = Real (ml1 * m2, el + e2).



Fig. 2. Reachable sets for the van der Pol system during time intervals

The floating point numbers we use work in principle with arbitrary precision,
however we introduce explicit round-off operations — the errors are therefore
correctly accounted for in the verification, and there is no impact on performance
because this yields essentially fixed precision computations.

Code Generation Isabelle/HOL provides a means to translate the definitions
for functions into functional programming languages like SML, Haskell, or Scala.
This allows for performant execution while the translation process (which is
currently to be trusted) is such that every reduction step taken by the generated
code corresponds to a verified equation in the logic.

Performance Comparison Comparison with Bouissou on his examples, sug-
gests that our tool is one or two orders of magnitude slower, as can be seen in
the work [6]. A more detailed comparison with Flow* and VNODE is given in
the work [8]: for the van-der-Pol system, our tool is only a factor of two to three
slower than Flow™. It is much slower than VNODE, but can handle larger initial
sets. Because of the reductions performed by our tool, our tool is even more
efficient than Flow™* for very large initial sets.



7 Future Work

Including higher order Runge-Kutta methods would be possible by formally prov-
ing the corresponding Taylor series expansion correct. But actually one advan-
tage of classical Runge-Kutta methods is that they do not require knowledge
of higher derivatives of the ODE. An approach that would (from a verification
point of view) better scale to higher orders would be Taylor series based methods
with automatic differentiation (like in VNODE [10]).

Setting up concrete instances of our tool still requires a lot of manual inter-
action, which is where we would like to see more automation. Moreover we aim
to extend the machinery developed for handling Pseudo-invariants to deal with
zero-crossings of hybrid systems.

References

1. Bak, S.: Reducing the wrapping effect in flowpipe construction using pseudo-
invariants. In: Proceedings of the 4th ACM SIGBED International Workshop on
Design, Modeling, and Evaluation of Cyber-Physical Systems. pp. 40-43. CyPhy
'14, ACM, New York, NY, USA (2014)

2. Bouissou, O., Chapoutot, A., Djoudi, A.: Enclosing temporal evolution of dynam-
ical systems using numerical methods. In: Brat, G., Rungta, N., Venet, A. (eds.)
NASA Formal Methods, LNCS, vol. 7871, pp. 108-123. Springer (2013)

3. de Figueiredo, L., Stolfi, J.: Affine arithmetic: Concepts and applications. Numer-
ical Algorithms 37(1-4), 147-158 (2004)

4. Harrison, J.: A HOL theory of Euclidean space. In: Hurd, J., Melham, T. (eds.)
TPHOLSs. LNCS, vol. 3603, pp. 114-129. Springer Berlin Heidelberg (2005)

5. Holzl, J.: Proving inequalities over reals with computation in Isabelle/HOL. In:
Proceedings of the PLMMS’09. ACM (2009)

6. Immler, F.: Formally verified computation of enclosures of solutions of ordinary
differential equations. In: Badger, J., Rozier, K. (eds.) NASA Formal Methods,
LNCS, vol. 8430, pp. 113-127. Springer International Publishing (2014)

7. Immler, F.: A verified algorithm for geometric zonotope/hyperplane intersection.
In: Proceedings of the 2015 Conference on Certified Programs and Proofs. pp.
129-136. CPP 15, ACM, New York, NY, USA (2015)

8. Immler, F.: Verified reachability analysis of continuous systems. In: TACAS (2015),
to appear

9. Immler, F., Holzl, J.: Numerical analysis of ordinary differential equations in Isa-
belle/HOL. In: Beringer, L., Felty, A. (eds.) Interactive Theorem Proving, LNCS,
vol. 7406, pp. 377-392. Springer (2012)

10. Nedialkov, N.: Implementing a rigorous ODE solver through literate programming.
In: Rauh, A.; Auer, E. (eds.) Modeling, Design, and Simulation of Systems with
Uncertainties, Mathematical Engineering, vol. 3, pp. 3-19. Springer (2011)

11. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A proof assistant for higher-
order logic. LNCS, Springer (2002)



	Tool Presentation: Isabelle/HOL for Reachability Analysis of Continuous Systems

