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Abstract. Ordinary differential equations (ODEs) are often used to
model the dynamics of (often safety-critical) continuous systems.
This work presents the formal verification of an algorithm for reachability
analysis in continuous systems. The algorithm features adaptive Runge-
Kutta methods and rigorous numerics based on affine arithmetic. It is
proved to be sound with respect to the existing formalization of ODEs
in Isabelle/HOL. Optimizations like splitting, intersecting and collecting
reachable sets are necessary to analyze chaotic systems. Experiments
demonstrate the practical usability of our developments.
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1 Introduction

Many real-world systems with continuous dynamics can be modeled with or-
dinary differential equations (ODEs). An important task is to determine for a
set of initial states all reachable states. This requires to compute enclosures
for solutions of ODEs, which is done by tools for guaranteed integration (e.g.,
VNODE-LP [21] or COSY [5]) and also by tools for reachability analysis of hy-
brid systems (with the state-of-the-art tool for linear dynamics SpaceEx [13] and
tools supporting non-linear dynamics like Flow* [9], HySAT/iSAT [12], or Ari-
adne [4]). Such tools aim at computing safe overapproximations, an intended use
is often the analysis of safety-critical systems. Therefore any effort to improve
the level of rigor is valuable, and such efforts have been undertaken already:
Nedialkov [21] implemented VNODE-LP using literate programming such that
correctness of the code can be examined by human experts. Taylor models, which
are used to represent reachable sets in COSY, Flow*, and Ariadne, have been
formalized in theorem provers in the context of Ariadne [10] but also as a generic
means for validated numerics [8,25].

Here we present the formal verification of an algorithm for reachability anal-
ysis of continuous systems. The algorithm splits, reduces and collects reachable
? Supported by the DFG RTG 1480 (PUMA)



sets during the analysis, crucial features for being able to analyze chaotic sys-
tems. Propagation of reachable sets is implemented using higher-order Runge-
Kutta methods with adaptive step size control. The formal verification of all
those algorithms is a novel contribution and a qualitative improvement on the
level of trust that can be put into reachability analysis of continuous systems.
Experiments show that our algorithms allow to analyze low-dimensional, non-
linear systems that are out of reach for many of the existing tools. Nevertheless,
our work should not be considered a rival to the existing tools or concepts, which
are more mature and flexible. We would rather like to demonstrate that formal
verification does not exclude competitive performance.

We build on our formalization of affine arithmetic and the Euler method [15].
The verification is carried out with respect to the theory of ODEs in the interac-
tive theorem prover Isabelle/HOL [22]. Every definition and theorem we display
in this document possesses a formally proved and mechanically checked counter-
part. The development is available in the Archive of Formal Proofs [17].

1.1 Related Work: ODEs and ITPs

In addition to the previously mentioned work on analysis of continuous systems,
there also exists related work on differential equations formalized in theorem
provers: Spitters and Makarov [20] implement Picard iteration to calculate solu-
tions of ODEs in the interactive theorem prover Coq, but restricted to relatively
short existence intervals. Boldo et al. [6] approximate the solution of one par-
ticular partial differential equation with a C-program and verify its correctness
in Coq. Platzer [23] uses a different approach in that he does not do numerical
analysis but uses differential invariants to reason symbolically about dynamical
systems in a proof assistant.

2 Main Ideas

In what follows, we consider the problem of computing reachable sets for systems
defined by an autonomous ODE ẋ = f(x) with f : Rn → Rn. We denote the
solution depending on initial condition x0 and time t with ϕ(x0, t). Reachability
analysis aims at computing (or overapproximating) all states of the system that
are reachable from some set of initial states X0 ⊆ Rn within a time horizon
T ⊆ R, i.e., the set ϕ(X0, T ).

We will start by illustrating the main ingredients of our algorithm for reach-
ability analysis. We do not claim originality for those ideas, however combining
all of them for numerically solving ODEs and especially formally verifying them
is, to the best of our knowledge, a novel contribution.

Rigorous Numerics. First of all, in any numerical computation, continuous, real-
valued quantities are approximated with finite precision. One therefore needs to
cope with round-off errors. Reasoning about them explicitly gets very tedious.
We therefore take the approach of set-based computing, or rigorous numerics:
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The idea is to compute with sets instead of single values and abstract all kinds of
errors (including round-off) by including them into the set. The data structure
we choose is affine forms, they represent sets called zonotopes and have been
successfully applied in hybrid systems analysis [14].

Guaranteed Runge-Kutta Methods with Step Size Adaptation. Bouissou et al. [7]
presented the idea to turn “classical” numerical Algorithms into guaranteed
methods by using affine arithmetic. They illustrated their approach on a stiff
(i.e., numerical approximations requiring very small step sizes in parts of the
state space) ODE, which makes adaptive step size control necessary. In gen-
eral, automatic step size adaptation improves the performance of any numerical
method, as it avoids wasting computational time on “easy” parts of the solution
and maintains high accuracy on “hard” parts of the solution.

Splitting. Zonotopes are convex sets, this leads of course to loss of precision
when non-convex sets need to be enclosed. But non-linear dynamics produce
non-convex sets, which is why a purely zonotope based approach is likely to
fail because of more and more increasing overapproximations. The immediate
approach is to split the sets before they grow too large, and have the union of
smaller sets represent the larger non-convex set.

Reduction. While splitting sets allows to maintain precision in the presence of
non-convex sets, it leads to problems when the dynamics produce large sets.
Especially when analyzing chaotic systems, small initial sets expand rapidly –
due to the dynamics of the system, not necessarily because of inaccurate com-
putations. This may produce a prohibitively large number of split sets. Any
possibility to reduce the size of reachable sets therefore is a valuable improve-
ment because it helps to reduce the number of sets. Our method is based on
the idea that whenever a reachable set flows through a hyperplane, it can be
reduced to the intersection with that hyperplane. We got the idea of reducing to
transversal hyperplanes from Tucker’s [24] algorithm, which reduces reachable
sets after every step to axis-perpendicular hyperplanes. Bak [3] also proposed to
perform reductions transversal to the flow. But in his setting, the user needs to
come up with suitable reductions.

3 Verification

We formalize all of the previous “main ideas” using the interactive theorem
prover Isabelle/HOL [22]. We build on Isabelle/HOL’s library for multivariate
analysis and the formalization of ODEs [18]. Our algorithms are formalized as
monadic programs using Lammich’s [19] framework. In such programs, we write
x ← y to bind x to the result of y, which may also fail. We write x ∈ X to
choose an arbitrary element x from the set X.
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3.1 Reachability in Continuous Systems

In order to verify our algorithms, we need of course a specification. We assume a
continuous system where the evolution is governed by a continuous flow ϕ(x, t),
i.e., ϕ(ϕ(x0, t), s) = ϕ(x0, t + s). We formalize reachability with the ternary
predicate y, where X yCX

Y holds if the evolution flows every point of X ⊆ Rn

to Y ⊆ Rn and does not leave the set CX in the meantime.

X yCX
Y := ∀x ∈ X. ∃t ≥ 0. ϕ(t, x0) ∈ Y ∧ (∀0 ≤ s ≤ t. ϕ(s, x0) ∈ CX)

CX can therefore be used to describe safety properties during the reachability
analysis. This predicate allows to easily combine steps in reachability analysis
according to the rule X yCX

Y ∧ Y yCY
Z =⇒ X y(CX∪CY ) Z.

3.2 Rigorous Numerics: Affine Arithmetic

Rigorous (or guaranteed) numerics means computing with sets that guarantee to
enclose the quantities of interest. The most basic data structure to represent sets
is intervals, but those suffer from the wrapping effect – enclosing rotated boxes
with boxes leads to large overapproximations. Moreover dependencies between
variables are lost, e.g. for an enclosure x ∈ [−1; 1], the term x − x evaluates to
[−2; 2] in interval arithmetic.

Affine arithmetic [11] improves over interval arithmetic by tracking linear
dependencies. For this one utilizes affine forms, represented by a list of generators
〈a0, . . . , ak〉 with ai ∈ Rn. An affine form is the formal expression a0+

∑
0<i≤k εi ·

ai where the formal variables εi are called noise symbols. The set γ〈a0, . . . , ak〉
represented by an affine form is called a zonotope and is given as the set of
all elements when the formal variables εi range over [−1; 1]: γ〈a0, . . . , ak〉 =
{a0 +

∑
0<i≤k εi · ai | −1 ≤ εi ≤ 1}

Affine forms track linear dependencies, because the formal variables are
treated symbolically. Examining the dependency problem from before, if we
have the affine form 1 · ε1 representing the enclosure x ∈ γ(1 · ε1) = [−1; 1],
then evaluating x− x in affine arithmetic yields 1 · ε1− 1 · ε1 = 0 · ε1. The result
represents therefore the exact quantity {0}. Any linear operation A : Rn → Rn

can be represented exactly, as it distributes over the generators of the affine form:
A(γ(〈a0, . . . , ak〉)) = γ〈Aa0, . . . , Aak〉. Nonlinear operations like multiplication
or division are linearized, adding the linearization error as a new noise symbol.
Provided with safe estimations on round-off errors, those can be included in
computations with affine forms as well. In general, all kinds of uncertainties can
be added using Minkowski addition X ⊕ Y = {x + y | x ∈ X ∧ y ∈ Y }, which
can be implemented efficiently for affine forms by taking a disjoint union of the
generators.

3.3 Guaranteed Runge-Kutta methods

Having presented the background on rigorous numerics, we will now concentrate
on solving ODEs numerically. A classical approach is given by Runge-Kutta
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methods, which approximate the solution in a series of discrete steps in time.
We assume from now on an autonomous ODE ẋ = f(x) and f ∈ C2(Rn,Rn)
twice continuously differentiable. Recall that we denote the solution for initial
value x0 at time t with ϕ(x0, t). Runge-Kutta methods are one-step methods:
they discretize the time into a grid of times t0, . . . , ti, . . . with step size hi =
ti+1 − ti and compute a series of steps xi ≈ ϕ(x0, ti). The discretization error
|ϕ(xi, hi) − xi| is obtained via Taylor series expansions of the solution and the
Runge-Kutta method.

Runge-Kutta methods can be turned into guaranteed methods by evaluating
the approximate steps using rigorous numerics, e.g., in affine arithmetic. To be
guaranteed, it is necessary to explicitly include the discretization error in the
set representation. In order to obtain a safe estimate for the discretization error,
one first needs to prove that the solution exists for the desired step and find an
a-priori bound on the solution.

A unique solution for an initial value x0 exists for stepsize h if the iteration
given by the Picard operator Ph : C∞([0;h],Rn)→ C∞([0;h],Rn) with Ph(ϕ) =
(t 7→ xn+

∫ t

0 f(ϕ(s))ds) has a unique fixed point, which can be reduced to finding
a post fixed point for an overapproximating operator Qh : P(Rn)→ P(Rn) with
Qh(X) = Xn + [0;h] · f(X).

cert-stepsize is defined to choose a step size h and iterate Qh until a post
fixed point C is reached, i.e., Qh(C) ⊆ C. If that does not succeed, the iteration
restarts with a smaller step size. cert-stepsize returns the chosen step size and the
post fixed point, which certifies the existence of a unique solution for the chosen
step size. The post fixed point also gives an a-priori bound on the solution:

Theorem 1 (Certification of Step). If x0 ∈ X0 and cert-stepsize(X0) =
(h,C), then there exists a unique solution ϕ(x0, [0;h]) ⊆ C.

The most basic Runge-Kutta method is the method of Euler, it approximates
the solution ϕ(x0, h) with the linear function with the slope given by the ODE f
at instant t: ϕ(x0, h) ≈ x0 +h · f(x0). The right-hand side of this approximation
is exactly the first two terms of a Taylor series expansion of the solution ϕ. When
evaluating f at different points, one can achieve that the Taylor series expansions
match up to higher order, which is the idea of Runge-Kutta methods.

We verified a generic two-stage Runge-Kutta method rk2h(x) = x+h ·ψh(x),
with ψh(x) = (1− 1

2p )f(x) + 1
2pf(x+ hpf(x)). Then rk2h(x0) approximates the

solution: |ϕ(x0, h)− rk2h(x0)| ∈ O(h3). We assume 0 < p ≤ 1 for the parameter
p, one can choose e.g., p = 1, to obtain the classical method of Heun.

For non-guaranteed methods, it suffices to show via Taylor series expansions
of ϕ and rk2h that the solution and Runge-Kutta approximation differ by some
remainder term in O(h3). For a guaranteed method, an explicit estimate for the
remainder term is needed, which requires higher derivatives of f . We denote
by f ′(x) : Rn → Rn the derivative (the linear mapping given by the Jacobian
matrix) of f at x and with f ′′(x) : Rn → Rn → Rn the derivative of f ′ (a
bilinear mapping).
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Algorithm 1 Step of Runge-Kutta method
1: function rkstep(X0)
2: (h, C)← cert-stepsize(X0)
3: R← rk2-remainderh(X0, C)
4: C′ ← rk2-remainder[0;h](X0, C)
5: X1 ← rk2h(X0)⊕R
6: XC ← rk2[0;h](X0)⊕ C′

7: ε← width(R)
8: return (h, ε, X1, XC)

When we set I = [0; 1] and T = [0;h] as enclosures for the occurring mean
values, the following expression for the remainder term can be deduced and
proved correct:

rk2-remainderh(X,XC) := h3

6 f
′′(XC

)(
f(XC)

)(
f(XC)

)
+

+ h3

6 f
′(XC

)(
f ′(XC)(f(XC))− h3p

4 f ′′
(
X + hpIf(X)

)(
f(X)

)(
f(X)

)
Theorem 2 (Remainder of Two-Stage Runge-Kutta). If ϕ(x0, t) ∈ X and
ϕ(x0, T ) ⊆ XC , then ϕ(x0, h)− rk2h(X) ∈ rk2-remainderh(X,XC)

With Algorithm 1, rkstep, we compute one step of the guaranteed Runge-
Kutta method: C is a first, rough enclosure for the solution over the interval
[0;h], which is used to compute a tighter enclosure XC over the interval and
an even tighter one X1 at the time instant h. The algorithm then satisfies the
following specification, which follows from Theorems 1 and 2.

Theorem 3 (Step of Runge-Kutta Method). Assume x0 ∈ X0 and
rkstep(X0) = (h, ε,X1, XC). Then there exists a unique solution ϕ(x0, [0;h]) ⊆
XC with ϕ(x0, h) ∈ X1, or in terms of the reachability predicate X0 yXC

X1.

Note that the computation (in particular for rk2-remainder) requires the higher
derivatives f ′, f ′′ of f , which Isabelle/HOL can automatically derive from the
symbolic representation of f . The quantity ε did not occur in the specification.
It gives the size of the remainder term, the discretization error. We can therefore
use ε to guide step size control in section 3.7.

3.4 Splitting

In the previous section we had developed the analysis of the discretization
error, which is unfortunately not the only source of error. Errors are intro-
duced due to linearization of operations on affine forms: non-convex sets are
enclosed in the convex zonotopes. These errors are quadratic in the size of
the zonotope, acceptable precision can therefore be maintained if the size of
the zonotopes is kept small. Zonotopes generated by 〈a0, . . . , an〉 can be split
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by halving one of the generators ai, i.e., setting split (〈a0, . . . , an〉, i) = (〈a0 −
ai/2, a1, . . . , ai−1, ai/2, ai+1, . . . , an〉, 〈a0 + ai/2, a1, . . . , ai−1, ai/2, ai+1, . . . , an〉)
The range of the resulting zonotopes encloses the range of the argument, which
follows from the definition of γ.

Theorem 4 (Splitting). split(X) = (Y,Z) =⇒ γ(X) ⊆ γ(Y ) ∪ γ(Z)

3.5 Reduction of Reachable Sets

Too many splits impair performance, which is why the size of the reachable
sets must be reduced whenever possible. The idea is to reduce reachable sets by
looking at how the flow passes through a given hyperplane H.

The general idea is to start with a reachable set X0 above the hyperplane and
perform one Runge-Kutta step rkstep(X0) = (h, ε,X1, XC) towards a reachable
set X1 below the hyperplane, see Figure 1. The enclosure for the flow between
X0 and X1 is given by XC , which means that every flow that eventually reaches
X1 has to pass through the intersection I := XC∩H. Therefore the computation
of reachable sets can continue with I instead of X1, which is of advantage if I is
smaller than X1.

However, the situation is in general a bit more complicated becauseX1 cannot
be guaranteed to lie below H, or only with very large step sizes. Also the dynam-
ics might just “scratch” the hyperplane, i.e., not completely passing through it.
To cope with those difficulties, Algorithm 2 is used to compute the intersection
of the flow from reachable setX0 with the hyperplaneH: it iterates Runge-Kutta
steps until the set has passed through H. It also allows to abort the iteration if
e.g., the flow has changed its dominating direction during the iteration.

The relation between the reachable set and the computed intersection can be
expressed with the reachability predicate X yCX

Y . In addition, we write H≥
for the half-plane above H. This allows to specify the outcome of intersect-flow:
Every flow starting from X above the half-plane reaches the intersection.

Theorem 5 (Intersection of Flow from X with Hyperplane H).
intersect-flow(X,H) = (A,X , I) =⇒

(
X ∩H≥

)
yX

(
A ∪

⋃
I∈I I

)
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Algorithm 2 Intersection of Flow from X with Hyperplane H
1: function intersect-flow(X, H)
2: I,X = ∅
3: while ¬(X below H) ∧ ¬abort(X) do
4: (h, ε, X1, XC)← rkstep(X)
5: I ← I ∪ {XC ∩H} . intersection of zonotope with hyperplane
6: X ← X ∪ {XC}
7: X ← X1

8: return (X,X , I)

The crucial step of Algorithm 2 is the computation of the intersection of
the zonotope XC with the hyperplane H in line 5, which can only be done
approximately. The verification of this is a nontrivial task [16].

3.6 Summarization of Intersections

When the intersection is computed by flowing the reachable set through the hy-
perplane step by step, we get a set I consisting of individual intersections Ii.
Many of the sets Ii usually overlap, in order to avoid redundant enclosures, it is
desirable to remove the overlaps. Ideally, this could be done using set difference,
an operation under which zonotopes are not closed. Therefore an overapproxi-
mation has to suffice. The overapproximation lays a grid of (hyper-)rectangles
Rk = [r−k ; r+

k ] over the interval enclosure [I−; I+] of
⋃

I∈I I: [I−; I+] =
⋃

k Rk.
Then we shrink every element Rk to R′k such that the union still encloses I:
R′k = Rk ∩ [r′−k ; r′+k ] where [r′−k ; r′+k ] is the interval enclosure of

⋃
i. Ii∩Rk 6=∅ Ii,

i.e. the union of all Ii that overlap with Rk. This process might even remove
some of the sets R′k.

The only important proposition to prove is that the so computed collection
is a safe overapproximation, i.e., we have the following theorem:

Theorem 6 (Summarization of Intersections).
⋃

I∈I I ⊆
⋃

k R
′
k

3.7 Reachability Analysis

Up to now, we only considered single steps of the reachability analysis, either
a Runge-Kutta step, or reducing a reachable set onto a hyperplane. In order to
compute reachable sets for larger time intervals, these steps need to be iterated.

The whole reachability analysis algorithm consists again of several parts:
The first part, flow-towards-plane, iterates Runge-Kutta steps to flow a collection
of reachable sets towards a given hyperplane. This iteration includes step-size
adaption, splitting of zonotopes, and finally the intersection. flow-towards-plane
takes place in a loop of reach that decides which plane to flow to next.

Flowing Towards one Plane The loop of Algorithm 3, flow-towards-plane,
maintains three kinds of sets: Flowing sets F , intersected sets I and aborted
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Algorithm 3 Flowing Towards one Plane
1: function flow-towards-plane(F0, H)
2: F ← F0, I ← ∅,A ← ∅
3: while F 6= ∅ do
4: (X, h) ∈ F
5: F ← F \ {X}
6: if width(X) ≥ max-width then . splitting is needed
7: (X, Y )← split(X)
8: F ← F ∪ {(X, h), (Y, h)}
9: else
10: (h, ε, X1, XC)← rkstep(X)
11: assert(safe(XC))
12: if reject(ε) then F ← F ∪ {(X, h/2)} . step size control
13: else if XC ∩H 6= ∅ then
14: (A,X , I′)← intersect-flow(X, H)
15: assert(safe(X ))
16: A ← A∪ {A}; I ← I ∪ I′
17: else if abort(X) then . abort when direction of flow changes
18: A ← A∪ {X}
19: else F ← F ∪ {(X, adapt-stepsize(h, ε))} . step size control
20: return (A, I)

sets A, all reachable sets are checked to be safe with respect to some given
specification in the loop (lines 11,15). The sets in F are associated with a step
size h. All sets are supposed to flow towards a given plane H. Inside the loop,
flow-towards-plane decides if sets need to be split (line 6), it performs a Runge-
Kutta step in line 10 and decides from the discretization error ε whether the step
size was too large and needs to be rejected (line 12). If close to the hyperplane,
an intersection is performed. Sets may also be aborted when the direction of the
flow changes (line 17). If otherwise successful, the step size is allowed to grow in
line 19, depending on the discretization error.

Assuming that
⋃

F∈F0
F ⊆ H≥, the invariant that the algorithm maintains

in its while loop is given in the following theorem.

Theorem 7 (Invariant of flow-towards-plane).(⋃
F∈F0

F
)
ysafe

((⋃
X∈(A∪F) X ∩H≥

)
∪
(⋃

I∈I I ∩H
))

The flows ending in A or F can be restricted to the half-space above, because the
parts of the sets below the plane is taken care of by the intersection. They need
to be restricted because it cannot be guaranteed that they are always above H
(splitting might introduce overapproximations). The flows to the intersections
I need to be restricted to the plane, because the computed sets can also be
overapproximations.

Flowing from Plane to Plane Algorithm flow-towards-plane(F0, H) flows
reachable sets from F0 towards a plane H and returns sets I that intersect
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Algorithm 4 Reachability from Plane to Plane
1: function reach(F0)
2: H ← choose-plane(F0, d),X ← ∅,F← {(F0, H)}
3: while F 6= ∅ do
4: (F , H) ∈ F
5: F← F \ {F}
6: (A, I)← flow-towards-plane(F , H)
7: HA ← choose-plane(A, 0) . aborted sets – collect as soon as possible
8: HI ← choose-plane(I, d) . regular intersection – collect after distance d
9: if abort(H) then X ← X ∪ I
10: else F← F ∪ (I, HI)
11: F← F ∪ (A, HA)
12: return X

the plane H and sets A that have been aborted before. Then choose-plane se-
lects different planes that determine where the sets in I and A supposed to flow
next. We sketch choose-plane only informally: For the sets in I, one determines
the strongest direction dI imposed by the dynamics and has them flow towards
a plane located a certain distance d in the strongest direction and perpendicular
to that direction (Figure 2). For the aborted sets in A, one similarly determines
the strongest direction dA, but places the plane directly next to the sets. Reduc-
ing the sets with intersections directly after switching the direction of the flow
turned out to be an effective means to keep the reachable sets small. For simplic-
ity, we only choose axis-perpendicular hyperplanes: experiments have suggested
that arbitrary hyperplanes do not necessarily lead to better performance.

The final result for our reachability Algorithm 4 reads as follows: if the algo-
rithm reach(F0) returns X , then the sets from F0 flow towards X , passing only
through safe sets:

Theorem 8. reach(F0) = X =⇒
(⋃

F∈F0
F
)
ysafe

(⋃
X∈X X

)
4 Implementation

We presented our algorithms on an abstract level, but refined them (still veri-
fied in Isabelle/HOL) towards an executable specification, using Lammich’s [19]
framework. From the executable specification, Isabelle/HOL allows to generate
Standard ML code. When executing it, we have to trust the (mostly syntac-
tic) translation from terms in Isabelle/HOL to Standard ML. We also trust the
compiler (PolyML 5.5.2) together with its library for big integers.

The working sets I,F ,A,F in Algorithms 2, 3, and 4 for example are imple-
mented using lists. Their elements, the reachable sets X, A, I are represented
by affine forms, which are represented by the list of their generators 〈a0, . . . , ak〉.
Most of the generators of an affine form are zero, which is why affine forms are
represented more efficiently as sparse lists. Moreover we keep the invariant that
the sparse lists are sorted, which allows for efficient implementation of binary
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operations like addition or multiplication. Real numbers are implemented using
pairs of integers m, e ∈ Z, which represent the real number m · 2e. For these
idealized floating point numbers, rounding is performed explicitly.

The abstract algorithms we presented here consist of roughly 300 lines of code
in our abstract formalization. Including the library for affine arithmetic and real
numbers, the generated code consists of more than 5500 lines. The verification
of the algorithms presented here can be estimated with approximately 4500 lines
of code, but this number does not include the mathematical background theory
about ODEs, which consists of about 6000 lines.

5 Experiments

We evaluate the performance and capabilities of our algorithm on small, classical
examples of nonlinear ODEs and compare our implementation with VNODE-LP
(version 0.3) and the Taylor model based tool Flow* (version 1.2). Both tools
perform neither splitting nor some sort of reduction. We also try to do com-
parisons with Bak’s [3] approach, which we call Flow*-PI: Bak experiments in
Flow* with manually declaring hyperplanes (“pseudo-invariants”) for reduction.
Recall that in contrast to Flow*-PI, our algorithm determines the hyperplanes
for reductions automatically.

Van-der-Pol. For the Van-der-Pol oscillator (Figure 3, plotted from the output of
our verified algorithm), which is given by the ODE ẋ = y; ẏ = (1−x2)y−x, we
consider initial value problems x0 ∈ 1.25 +w · [0, 0.01], y0 ∈ [2.28; 2.32] and vary
the size of the initial set with the parameter w. For w = 30, Althoff [1] reports a
run-time of 23 seconds. Since different parameters (e.g., step size, order of Taylor
models, error tolerance) can be chosen for the different tools, it is hard to perform
an objective comparison. We tried to be fair by setting the parameters to result
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in comparable step sizes (0.01) for Flow* and our algorithm. An adaptive order
of 4-6 seemed like the best compromise between performance and accuracy for
Flow*, a further parameter is 10−5 for the remainder estimation.

Figure 5 summarizes the results of our experimentation: it shows the run-
time for VNODE-LP, Flow*, Flow*-PI and our tool RK2+S+R (splitting and
reduction enabled). Failed attempts are set to 120 seconds. VNODE-LP can
only handle small initial sets. The tool Flow* can handle initial sets up to size
w = 50, and takes between 3 and 8 seconds. For the same problems, our tool
takes between 10 and 18 seconds. It scales with larger initial sets and is the only
one that can handle w ∈ {125, 175}. This is due to the very effective reduction
taking place at x ≈ 1.5, when y ≈ −1, as can be seen in Figure 3. Manually
inserting hyperplanes for reduction at y = 0 and x = 1.5 allows Flow*-PI to
integrate w = 75 in 24 seconds. We were unable to come up with hyperplanes
that would allow Flow*-PI integration for larger values of w.

Lorenz. Consider the classical Lorenz system ẋ = 11.8x − 0.29(x + y)z; ẏ =
−22.8y + 0.29(x + y)z; ż = −2.67z + (x + y)(2.2x − 1.3y) in Jordan normal
form. We experiment with 13 initial sets of width 0.005 along the line segment
between (0.74, 2.21, 27) and (1.5, 2.25, 27). The dynamics exhibits with smaller
values for x more and more chaotic behavior. Enclosures of the least and most
chaotic problem (computed with our verified algorithm) are depicted in Figure 4.

We toggle the different optimizations of our tool in order to study their
respective effects. Moreover we compare our tool with Flow* and Flow*-PI
(VNODE-LP fails to integrate any of those problems). For Flow*-PI, we chose
to reduce at x = 2, z = 27, and x = 6, which gives reductions similar to our
algorithm: compare Figure 4, where one can see reductions at x ≈ 1.5 (at z ≈ 5)
and z = 27 (at x ≈ 13). The results are summarized in Figure 6 and we interpret
them as follows. Flow* is fastest, but fails on the three most chaotic problems.
Flow*-PI allows to solve one additional problem. The Runge-Kutta method with
reduction and splitting (RK2+S+R) allows to solve all of the problems, utiliz-
ing the Euler-method (Euler+S+R) shows similar scaling behavior but is less
efficient. Just RK2 and RK2 with reduction (RK2+R) are more efficient when
the dynamics is less chaotic, but promptly fail (similar to Flow*) when chaos
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IVP method step size time [s] error(x)

#8: (0.94, 2.16, 27) rk2, 10−5 7 · 10−4 194 0.14
rk2, 2 · 10−4 2 · 10−3 67 0.24
rk2, 2 · 10−2 5 · 10−4 286 0.9

Flow* 5 · 10−3 13 0.02
Flow*-PI 5 · 10−3 16 0.3

#10: (0.79, 2.14, 27) rk2, 10−5 2 · 10−4 595 0.3
rk2, 2 · 10−4 6 · 10−4 241 0.5
rk2, 2 · 10−2 1 · 10−4 1648 1.3

Flow* 5 · 10−4 121 5.8
Flow*-PI 5 · 10−4 106 0.5

Table 1. Comparison for two particular IVPs of the Lorenz system

takes over. In summary, this shows that splitting is essential for handling chaotic
systems, but (as can be seen at RK2+S) does not scale without reduction.

For another comparison, we study the effect of different strategies for step-
size adaptation: we vary the threshold of discretization error for rejecting steps
between 10−5, 10−4, 10−2. Table 1 shows that (at least for good performance) a
compromise needs to be found: small local errors require more, smaller steps, but
allowing for too large local errors results in larger sets, therefore more splitting
and worse performance.

Comparing the performance of rk2, 2 · 10−4 with Flow* and Flow*-PI in
Table 1, we can see that on the easier problem #8, Flow* is very efficient:
it achieves better precision despite larger step size. On the more complicated
problem #10, Flow* fails to achieve the same accuracy, because the reachable
sets grow too large. This problem is successfully addressed by the reductions
performed in Flow*-PI and our method. Compared with Flow*-PI, our method
achieves with slightly larger step sizes the same accuracy, it is a bit more than
twice as slow, but it does not need manual interaction for choosing the reductions.

6 Conclusion

We presented a formally verified analyzer for continuous systems given by ODEs.
Its performance is in the range of other, non-verified tools, and even scales bet-
ter than them in the presence of large initial sets and chaotic dynamics. More
importantly, our algorithm introduces a new level of mathematical rigor and
therefore trust to analyzers for continuous systems.

Discussion. There is no single best approach to reachability analysis of ODEs,
therefore many of our design decisions were guided heuristically. Optimizations
like splitting and reduction to hyperplanes are only effective for low-dimensional
systems. Concerning splitting of reachable sets, an alternative could be to use
a more complex data structure like Taylor models that directly represent non-
convex sets. It seems, however, that splitting is also necessary for Taylor model

13



based analysis tools, as could be seen in section 5. Another possibility to re-
duce the reachable sets without geometric intersections has been proposed by
Althoff [2], but it depends on the problem at hand which one is more efficient
and/or precise.

Future work. Since we support intersection of reachable sets with hyperplanes,
we should be able to generalize the approach to handle switching surfaces of
hybrid systems. Moreover we aim to propagate more topological information (e.g.
partial derivatives) of the flow in order to be able to certify the computations
for the existence of the Lorenz-attractor [24].

Acknowledgements. I would like to thank the anonymous reviewers for their
helpful feedback and in particular for pointing me to Bak’s work [3].
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