
A Verified Algorithm for Geometric
Zonotope/Hyperplane Intersection

Fabian Immler
Technische Universität München

immler@in.tum.de

Abstract
To perform rigorous numerical computations, one can use a gen-
eralization of interval arithmetic, namely affine arithmetic (AA),
which works with zonotopes instead of intervals. Zonotopes are
also widely used for reachability analysis of continuous or hybrid
systems, where an important operation is the geometric intersection
of zonotopes with hyperplanes.

We have implemented a functional algorithm to compute the
zonotope/hyperplane intersection and verified it in Isabelle/HOL.
The algorithm is similar to convex hull computations, our verifica-
tion is therefore inspired by Knuth’s axioms for an orientation pred-
icate of points in the plane, which have been successfully used to
verify convex hull algorithms. The interesting fact is that we com-
bine a mixture of different fields: a discrete geometrical algorithm
to perform operations on the continuous sets represented by zono-
topes.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Correctness proofs; F.3.1 [Specifying and Verifying
and Reasoning about Programs]: Mechanical verification

Keywords Interactive Theorem Proving, Geometric Algorithms

1. Introduction
In order to perform rigorous numerical computations, sets of con-
tinuous values need to be represented with appropriate data struc-
tures. Zonotopes are the geometric objects that arise when com-
puting with affine arithmetic (AA) [5]. They improve over interval
arithmetic by their ability to track linear dependencies and have
therefore become widely used, for example as numeric domain in
static analysis of programs [8] or for the analysis of continuous or
hybrid systems [2, 3, 6]. Then, zonotopes often occur in combi-
nation with hyperplanes, e.g. when hyperplanes are used to model
the discrete jump conditions of a hybrid system. This is one situa-
tion where zonotope/hyperplane intersections need to be computed.
Moreover, computing the intersection can also be an important op-
timization for the analysis of continuous systems. The intended ap-
plication of such analyses is often a safety-critical system, which is
why formal verification of the utilized algorithms is highly desir-
able.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CPP ’15, January 12–14, 2015, Mumbai, India.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3296-5/15/01. . . $15.00.
http://dx.doi.org/10.1145/2676724.2693164

Our main result is a functional implementation and mechan-
ically checked verification of an algorithm to compute zono-
tope/hyperplane intersection, carried out in Isabelle/HOL. The in-
tersection is performed geometrically, as described by Girard and
Le Guernic [7] and is similar to convex hull algorithms. Such algo-
rithms have been successfully verified with Knuth’s [13] theory of
counterclockwise systems for discrete sets of points. As Zonotopes
represent continuous sets, we needed to extend Knuth’s theory to
continuous vector spaces. In summary, this work bridges a gap
between verification of discrete geometrical algorithms and the
formalization of continuous mathematics.

We build on our formalization of zonotopes in the context of
AA, which has already been used to analyze ordinary differential
equations [10], and therefore the continuous part of hybrid systems.
With the ability to compute intersections, this work will enable us
to include discrete jumps into the analysis.

1.1 Outline
We start by giving a short introduction into the mathematical back-
ground theory and its formalization in Isabelle/HOL in section 2,
then explain affine arithmetic and zonotopes in section 3. We give
a high-level overview of the geometric intersection algorithm in
section 4. This will motivate the theory for geometric reasoning
in section 5. A central part of the algorithm consists of computing
the border (or hull) of two-dimensional zonotopes, the verification
thereof is explained in section 6. We bring together the whole algo-
rithm and its verification in section 7. Finally, we present the prac-
tical usability of our verified algorithm on some small examples in
section 8 and discuss related work in section 9.

1.2 Notation
We work with the interactive theorem prover Isabelle, using the
logic Isabelle/HOL [16]. For the sake of clearer presentation, we
take the liberty to present our formalization from a relatively ab-
stract, high-level point of view and prefer standard mathematical
notation, rather than sticking to the formalization which is closer to
functional programming.

We will not distinguish between sets, lists or sequences: we
denote sets with uppercase letters A,B, . . . , Z, as well as lists and
indexed sequences, where we notate the corresponding elements in
lowercase letters. For example, A can denote a set {a1, . . . , an},
a list [a1, . . . , an], or a sequence of elements i 7→ ai. Despite
the lax presentation, every theorem of the following has a strictly
formal, mechanically checked counterpart. The theory sources can
be browsed in the archive of formal proofs [11, 12].

2. Background from Analytic Geometry
We build our formalization on Isabelle/HOL’s library for real and
multivariate analysis, i.e., we can use real numbers R and vectors

(px, py)

(qx, qy)

7→ f [p; q]

(rx, ry)

(sx, sy)

Figure 1. Wrapping effect

Rn. We will need basic concepts from analytic geometry, which
are just basic tools from linear algebra. Nevertheless we introduce
them, together with the geometric meaning and with the hope to
ease understanding.

We write vectors p ∈ R2 as tuples p = (a, b) and use subscripts
to refer to components, i.e., px = a and py = b. We write all
operations between vectors p, q ∈ Rn and real numbers r, s ∈
R explicitly: multiplication is written r ∗ s and scaling p by a
factor r is written r · p. We refrain from omitting · and ∗, as is
sometimes customary, because we will use two subsequent symbols
pq to denote line segments between the points p and q and three
subsequent symbols pqr for a predicate of geometric orientation,
which we introduce in section 5.

Another important operation in analytical geometry is the inner
product (or dot product) of vectors p, q ∈ Rn, for which we write
〈p, q〉 =

∑n
i=1 pi ∗ qi. In particular for p, q ∈ R2, we have

〈p, q〉 = px ∗ qx + py ∗ qy . As geometric intuition, the inner
product represents the cosine of the angle between two vectors
multiplied with the product of their length. It is zero if the vectors
are perpendicular.

Recall that (hyper-)planes can be characterized in normal vector
form, i.e. X = {x ∈ Rm. 〈n, x〉 = c} defines a plane orthogonal
to the vector n and whose position in space is determined by c ∈ R.
Similarly, {x ∈ Rm. 〈n, x〉 ≤ c} defines a half-space.

3. Affine Arithmetic (AA)
If one aims at doing rigorous numerical computations, the first and
most naive approach is to use interval arithmetic (IA). IA, however,
suffers from well-known drawbacks like the dependency problem
and the wrapping effect.

The dependency problem occurs when expressions with re-
peated occurrences of the same quantity are evaluated. As a simple
example, consider f(x) = x − x. Evaluating f([−1; 1]) naively
results in the gross overestimation [−2; 2] of the real quantity 0.

When computing with multidimensional intervals – which are
Cartesian products of intervals – the wrapping effect can occur. It
can be visualized already in the two-dimensional case. Assume a
rectangle [p; q] = [px; qx]× [py; qy] as in figure 1 and a function f
rotating the rectangle. When using IA, the rotated rectangle needs
to be enclosed in a Cartesian product [rx; sx]× [ry; sy] of intervals
again, leading to large overapproximations of the real quantities.

With AA, Figueiredo and Stolfi [5] describe a generalization of
IA in which sets are not represented by the bounds of intervals,
but by affine forms. An n-dimensional affine form is a formal
expression,

a0 +
∑

0<i∈N

εi · ai

where a0 ∈ Rn is called the center and the ai ∈ Rn are called
generators. The noise symbols εi are just formal variables. We
assume implicitly from now on that there are only finitely many
nonzero generators. In the formalization, we work with a suitable
subtype of functions N→ Rn for the generators.

The set γ(a0 +
∑

i εi · ai) represented by an affine form, or its
range, is the set of all elements given by the form when the εi range

over [−1; 1].

γ

(
a0 +

∑
i

εi · ai

)
=

{
a0 +

∑
i

εi · ai. − 1 ≤ εi ≤ 1

}
Affine forms track linear dependencies, because the formal vari-

ables are treated symbolically. To return to the example demonstrat-
ing the dependency problem from before, if we have the affine form
1 · ε1 representing the interval [−1; 1] = γ(1 · ε1), then evaluating
f using affine forms yields f(1 · ε1) = 1 · ε1 − 1 · ε1 = 0 · ε1,
where the result represents the exact quantity γ(0 · ε1) = {0}. It is
therefore important to consider the dependencies between formal
variables when looking at several affine forms, because the joint
range

{(
a0 +

∑
i εi · ai, b0 +

∑
i εi · bi

)
. ∀i. − 1 ≤ εi ≤ 1

}
of

two affine forms may be a proper subset of the Cartesian product
of their individual ranges.

The guarantees one gets from computing with affine forms
therefore always include dependencies between the involved “real”
quantities and are expressed via the joint range of affine forms,
what we illustrate here with the example of addition:

THEOREM 3.1. If x ∈ Rn and y ∈ Rn are in the joint range, i.e.,

(x, y) ∈

{(
a0 +

∑
i

εi · ai, b0 +
∑
i

εi · bi

)
. − 1 ≤ εi ≤ 1

}
then x+ y is in the range of the resulting affine form:

x+ y ∈

{
(a0 + b0) +

∑
i

εi · (ai + bi). − 1 ≤ εi ≤ 1

}
Other operations, like scaling, and in general every linear oper-

ation ϕ can be represented exactly, i.e., without losing correlations
between input and output quantities, because linear operations dis-
tribute over the formal sum:

ϕ

(
γ

(
a0 +

∑
i

εi · ai

))
= γ

(
ϕ(a0) +

∑
i

εi · ϕ(ai)

)
Since rotation is a linear operation, AA does not suffer from the

wrapping effect like IA does. Moreover, affine forms allow to repre-
sent high-dimensional sets much more compactly than e.g., general
polytopes. We elaborate on the geometry of the sets represented by
affine forms in the following.

Zonotopes Apart from looking at affine forms as a formal sum,
studying the sets they represent geometrically gives some valuable
insights. The represented sets are called zonotopes, and they are
particular centrally symmetric, convex sets. A zonotope can be
visualized as the Minkowski sum of line segments defined by the
generators. The Minkowski sum X ⊕ Y operates on two sets and
returns the set containing all possible sums between elements of the
first and second set:

X ⊕ Y = {x+ y. x ∈ X ∧ y ∈ Y }
For a generator ai, the corresponding line segment is li = {ε ·
ai. − 1 ≤ ε ≤ 1}. Figure 2 illustrates how a zonotope is
built by incrementally taking the Minkowski sum of the three line
segments l1, l2, l3 corresponding to generators a1, a2, a3. In the
two-dimensional case, we can speak of corners (c0, c1, . . .) and
edges (c0c1, c1c2, . . .) of the zonotope (compare figure 3). Corners
are of the form a0 +

∑
i εi · ai for εi ∈ {−1; 1}, edges are of the

form ci(ci + 2 · aj) for corners ci and generators aj . We call the
set of all edges the hull of the zonotope.

4. Intersection
Computing the intersection of zonotopes with hyperplanes is an
important operation and can be done geometrically. Unfortunately,

a1
a2

a3

l1 l1 ⊕ l2 l1 ⊕ l2 ⊕ l3

Figure 2. Construction of a zonotope

a1
a2

a3

c0

c5

c4

c3

c2

c1

(c,M)

(c,m)

Lc

x

y

Figure 3. Corners and edges of a zonotope, intersecting line Lg

the complexity for computing the exact intersection grows expo-
nentially with the dimension. An overapproximation of the zono-
tope before computing the intersection is possible but often leads
to too coarse overapproximations. Therefore Girard and Le Guer-
nic [7] proposed a way to directly compute overapproximations to
the intersection by reducing it two a two-dimensional problem.

In this section we give a rough overview over the algorithm and
the challenges it poses for verification.

4.1 Reduction to a Two-Dimensional Problem
The first idea is to overapproximate a given set X tightly from
a set D of directions, which can be chosen arbitrarily. For every
direction d ∈ D ⊆ Rn, the infimum md and supremum Md of
the sets {〈x, d〉. x ∈ X} needs to be determined. Geometrically
speaking, md and Md give the position of two hyperplanes with
normal vector d. The two hyperplanes bound X from below and
above, respectively. An overapproximation P is then given by the
points between all of these hyperplanes:

X ⊆ P = {x ∈ Rn. ∀d ∈ D. md ≤ 〈x, d〉 ≤Md}
The second observation of Girard and Le Guernic is that when

the set X is the intersection of some set Z with a hyperplane G =
{x. 〈x, g〉 = c}, then the computation of the overapproximation
P can be reduced to a two-dimensional problem with the linear
transformation Πg,d : Rn → R2, Πg,d(x) = (〈x, g〉, 〈x, d〉).

THEOREM 4.1 (Two-Dimensional Reduction).

{〈x, d〉. x ∈ Z ∩G} = {y. (c, y) ∈ Πg,d(Z)}
The theorem is an easy consequence of the definitions of G and
Πg,d. For every direction d, the theorem allows to reduce the
computation of the intersection Z ∩ G on the left-hand side to the
intersection of the projected two-dimensional zonotope Πg,d(Z)
with the vertical line Lc = {(x, y). x = c}.

We therefore need an algorithm bound-intersect-2D that com-
putes the intersection of a two-dimensional zonotope S with a ver-
tical line Lc, returning the minimal m and maximal M second co-

ordinate of the intersection, as illustrated in figure 3. Correctness of
the algorithm is specified as follows:

bound-intersect-2D(S,Lc) = (m,M) =⇒
S ∩ Lc ⊆ {(x, y). x = c ∧m ≤ y ≤M}

With this specification and theorem 4.1 in mind, we can easily
define the algorithm bound-intersect(Z, g, c, d), which returns the
lower and upper position (m,M) of the hyperplanes with normal
vector d that bound the intersection Z ∩ {x. 〈x, g〉 = c} of a
zonotope Z with the hyperplane normal to g at c.

bound-intersect(Z, g, c, d) :=

bound-intersect-2D(Πg,d(Z), Lc)

The idea to implement the algorithm bound-intersect-2D for
two-dimensional zonotopes is to first compute the edges of the
zonotope with an algorithm hull-of-zonotope S. We compute
bounds on the intersection of the vertical line Lc with every edge
ab as follows: for the line segment ab we assume ax ≤ g ≤ bx,
otherwise we just flip the corners. If the segment is vertical, i.e.,
ax = bx, we return m = min(ay, by) and M = max(ay, by) as
bounds on the intersection. If ax < bx, we use approximate opera-
tions with fixed precision to compute bounds on the exact point of
intersection m ≤ by−ay

bx−ax
(c − ax) + ay ≤ M . The zonotope then

intersects the line between the minimum and maximum bounds
m,M of all edges. The only part missing is then how to compute
hull-of-zonotope, which we sketch in the following.

4.2 Computation of Two-Dimensional Hulls
To formally reason about the computed intersection, some guaran-
tees concerning the edges computed by hull-of-zonotope are re-
quired: in particular that they actually enclose the zonotope. To see
how this can be ensured, we first take a look at how they are actually
computed. Intuitively, assuming that all generators point upwards,
one starts at the lowest corner c0 in figure 3 and appends to it the
“rightmost” generator a1 (twice) to reach c1. One then continues
with the “rightmost” of the remaining generators, a2 and is in the
process essentially “wrapping up” the hull of the zonotope.

We therefore need a way to reason about “rightmost” vectors.
Similar ideas of “wrapping up” a set of points also occur for convex
hull algorithms, they have been studied extensively in the literature
and we can build on a nice abstraction by Knuth [13], namely the
theory of counterclockwise (ccw) systems.

The algorithm hull-of-zonotope is easier to implement than
convex hull algorithms, because it basically only needs to sort the
generators. The verification, however, poses additional challenges
as we do not deal with discrete set of points, but rather with the
continuous set given by the zonotope which needs to be enclosed
by the computed segments.

In the following section, we will present our formalization of
Knuth’s ccw system and how we extended it from discrete to
continuous sets.

5. Geometry
In order to verify geometric algorithms, one needs a formal notion
of the geometric concepts involved. For convex hull algorithms,
which are similar to hull-of-zonotope, Knuth [13] has given a
small theory that axiomatizes the notion of orientation of points.
The intuition is that for three points p, q, r in the plane, visiting
them in order requires either a counterclockwise (ccw) turn (written
pqr) or clockwise (¬pqr) turn. Knuth observed that already few of
the properties fulfilled by the ccw predicate pqr suffice to define
a theory rich enough to formalize many concepts in algorithmic
geometry.

p q

r

t

r p

q

t s

p

qr

Figure 4. Cyclic symmetry (left), interiority (middle), transitivity
(right); dashed predicates are implied by solid ones

We start this section by presenting Knuth’s system of axioms
and how they abstractly induce a total order on particular sets of
points. Then we present the standard instantiation for points in the
plane and which additional constraints are needed to talk about ccw
systems on vector spaces instead of discrete sets.

5.1 CCW System
Knuth introduces the notion of a ccw system as a set of points
together with a ccw predicate written pqr for points p, q, r, which
satisfies the following properties, inspired by the relations satisfied
by points in the plane. For all axioms in the following, there is the
additional implicit assumption that the involved points are pairwise
distinct. For three points, only simple axioms need to be fulfilled:

AXIOM 5.1 (Cyclic Symmetry). pqr =⇒ qrp

AXIOM 5.2 (Antisymmetry). pqr =⇒ ¬prq

AXIOM 5.3 (Nondegeneracy). pqr ∨ prq

Cyclic symmetry and the more interesting case of interiority,
which involves four points, are illustrated in figure 4. Interiority
states that if one point t is left of three lines pq qr rp, then the three
other points are oriented in a triangle according to pqr.

AXIOM 5.4 (Interiority). tpq ∧ tqr ∧ trp =⇒ pqr

The most important tool for reasoning is transitivity, which
involves five points and works if three points p, q, r lie in the half-
plane left of the line ts, i.e., tsp ∧ tsq ∧ tsr. Then, fixing t as first
element for the ccw relation, we have transitivity in the second and
third element: tpq ∧ tqr =⇒ tpr (see figure 4).

AXIOM 5.5 (Transitivity).

tsp ∧ tsq ∧ tsr ∧ tpq ∧ tqr =⇒ tpr

The same intuition also holds for the other side of the half-plane:

AXIOM 5.6 (Dual Transitivity).

stp ∧ stq ∧ str ∧ tpq ∧ tqr =⇒ tpr

As it is done by Knuth, we can show that axioms 5.1, 5.2, 5.3
and 5.5 together imply axiom 5.6 and vice versa. As this reasoning
is carried out abstractly in a small first order theory, sledgehammer
(Isabelle’s interface to various automatic theorem provers) finds a
proof consisting of one single invocation of an automated prover,
which is a nice contrast to more than half of a page of low level
reasoning in Knuth’s presentation.

5.2 Total Order from CCW
As sketched in section 4.2, we need to be able to select a “right-
most” element of a set of vectors. With the transitivity relation pre-
sented before, we can obtain a total order on vectors which allows
to do just this: Given a center t and another point s, the orientation

predicate tpq can be used to define a total order on points p, q in
the half-plane left of ts, i.e., p < q iff tpq. Axioms 5.2 and 5.3
directly provide antisymmetry and totality. Transitivity of the order
follows from axiom 5.5 and the assumption that all points are in the
half-plane left of ts.

This ordering is then used to specify a ccw-sorted list of points
R, with respect to a center p:

ccw-sorted p R := (∀i ∀j. i < j =⇒ prirj)

A list of points can only be sorted if all points are in one half-plane
through the center, because the first element r0 of a ccw-sorted list
restricts all subsequent points to the half-plane left of pr0.

5.3 Instantiation for Points in the Plane
Up to now, our reasoning was based abstractly on ccw systems,
but of course we also want to use the results for a concrete ccw
predicate. Well known from analytic geometry is the fact that ccw
orientation is given by the sign of the following determinant |pqr|:

|pqr| :=

∣∣∣∣∣∣
px py 1
qx qy 1
rx ry 1

∣∣∣∣∣∣ =
px ∗ qy + py ∗ rx + qx ∗ ry−
(rx ∗ qy + ry ∗ px + qx ∗ py)

Points are collinear iff |pqr| = 0. Under the assumption that one
works with a finite set of points where no three points are collinear,
the following predicate pqr> satisfies the axioms of a ccw system.

pqr> := |pqr| > 0

Most axioms can easily be proved using Isabelle/HOL’s rewrit-
ing for algebraic structures. Transitivity is slightly more compli-
cated, but can also be solved automatically after a proper instantia-
tion of Cramer’s rule, which is easily proved automatically:

|tpr| = |tqr||stp|+ |tpq||str||stq| , if |stq| 6= 0

5.4 CCW on a Vector Space
Knuth presented his axioms with a finite set of discrete points in
mind, in our case we need to talk about orientation of arbitrary
points in a continuous set. We therefore require consistency of the
orientation predicate when vector space operations are involved.

We stick to the the predicate pqr> because we can rule out
degenerate cases in pre- and postprocessing phases (sections 6.5
and 6.4). As vector space, we consider points p, q, r ∈ R2.

One obvious requirement is that orientation is invariant under
translation (figure 5, left):

THEOREM 5.7 (Translation).

(p+ s)(q + s)(r + s)> = pqr>

With translation invariance, we can reduce every ccw triple to a
triple with 0 as origin, and from there it is easy to state consistency
with respect to scaling: If at q, there is a ccw turn to r, then every
point on the ray from 0 through q will induce a ccw turn to r
(figure 5, right).

THEOREM 5.8 (Scaling).

α > 0 =⇒ 0(α · q)r> = 0qr>

Negative scalars can be treated by requiring that reflecting one
point at the origin inverts the ccw predicate:

THEOREM 5.9 (Reflection).

0(−p)q = 0qp

Furthermore, the addition of vectors q and r, which are both
ccw of a line p needs to be ccw of p as well:

p q

rp+ s

q + s

r + s

0 q

r

Figure 5. Invariance under translation (left), invariance under scal-
ing (right)

THEOREM 5.10 (Addition).

0pq =⇒ 0pr =⇒ 0p(q + r)

Equipped with these theorems, we can simplify many of the ccw
predicates that can occur. For example, one can get rid of all parts
of the third component which are collinear with the second:

γ > 0 =⇒ 0a(γ · a+ b)> = 0ab>

Some ccw predicates involving a sum can be reduced to showing
the ccw predicate for every summand:

∀i ≤ k. pq(ri)> =⇒ pq

∑
i≤k

ri

>

5.5 The Interior of a Polygon
Looking at how pqr> is defined, one can see that the ccw predicate
can also be used to describe half-planes: Xpq = {x. pqx>}
is the half-plane left of the line pq. The interior of any given
convex polygon can therefore be described as the intersection of
half-planes defined by consecutive edges: for corners c0, . . . , cn
of a polygon, we have that the interior of the polygon is the set
P =

⋂n
i=0Xcjcj+1 .

6. Verification of Two-Dimensional Hulls
Equipped with the formalisms to reason about orientation in the
plane, we now detail on the algorithm hull-of-zonotope to compute
the hull of a two-dimensional zonotope a0 +

∑
i εi ·ai and how we

verified it.
The verification of the algorithm is simpler when we assume

that the generators ai are not collinear and that all of them point
upwards, i.e., (ai)y > 0. In fact, the instantiation of the ccw
predicate pqr> requires this. We present a suitable preprocessing
in section 6.5, which ensures that these conditions are always met
when computing the hull. We can also assume that the zonotope is
centered around the origin, i.e., a0 = 0.

The aim is to compute a list of corners ci of the zonotope
generated by the ai. We first compute the corners on the right
side (c1, c2, c3 in figure 2) by appending the generators in sorted
order. Then we reflect the obtained corners according to the central
symmetry of zonotopes. In a bit more detail, the algorithm can be
described as in figure 6

Implementing this algorithm in a functional language is straight-
forward. The specification that we aim to verify is that the returned
edges enclose the interior of the zonotope, i.e., every point x in the
zonotope is left of all the edges cici+1 (as described in section 5.5).
The verification can be outlined as follows: First, appending sorted
vectors in order keeps certain linear combinations ccw oriented
with respect to the line segments. Second, we establish that these
linear combinations represent the interior of the zonotope, therefore
the interior of the zonotope is ccw of the line segments after step
5. Then, because of symmetries, the same holds for the reflected

1. input: a zonotope a0 +
∑

i εi · ai, given by the list of its
generators a0, . . . , an, all pointing upwards

2. find the lowest corner c0 of the zonotope, i.e., c0 = −
∑

i ai

3. sort the generators, i.e., assume i < j =⇒ 0(ai)(aj)
>

4. double the generators, i.e., bi := 2 · ai
5. append generators in order, i.e., ci+1 = ci + bi+1

6. reflect the corners c0, . . . , cn, i.e., cn+i+1 = −ci+1

7. output: a list of edges c0c1, c1c2 . . . , cncn+1, . . . , c2n−1c2n

Figure 6. Algorithm hull-of-zonotope

c0
b1

c1

b2

c2

b3

c3

ε1 · b1

ε2 · b2

ε3 · b2

Figure 7. c0+polychain([b1, b2, b3]) and illustration of lemma 6.1

corners on the left, i.e., the ones after step 6. Finally, we give a
relaxed notion of ccw that allows to include not only the interior
but also the edges of the zonotope.

6.1 Appending Sorted Vectors
We write polychain B for the list of points obtained by ap-
pending the vectors bi ∈ B in order, i.e, (polychain B)i+1 =
(polychain B)i + bi+1. A crucial property is that whenever a list
of vectors B is sorted, then certain linear combinations of the ele-
ments bi of B are ccw of polychain B. Compare also figure 7.

LEMMA 6.1. Assume ccw-sorted B and ∀i. 0 < εi < 1 and
C = polychain B. Then:

cjcj+1

(∑
i

εi · bi

)>

The proof goes by induction the length ofB resp. C and makes use
of ccw vector space theorems like the ones given in section 5.4.

6.2 The Interior of the Zonotope
The interior of the Zonotope, i.e., the points constructed as linear
combinations a0 +

∑
i εi · ai for −1 < εi < 1, can also be

represented as linear combinations c0 +
∑

i εi · bi for a different
set of 0 < εi < 1: the linear combinations are just translated to the
lowest point c0, and doubling the vectors in step 3 makes up for the
smaller range for the εi.

Now assume that after step 4, we have computed n corners
c0, . . . , cn. Since the cj are sorted, we have from lemma 6.1 that
all linear combinations x = c0 +

∑
i εi · bi are left of the line

segments cjcj+1, but according to the previous considerations, this
means that the interior of the Zonotope is left of the computed line
segments after step 4:

LEMMA 6.2. After step 4,
cjcj+1(

∑
i εi · ai)

> holds for −1 < εi < 1

Note that at this step it is important to consider only the strict
interior (i.e., −1 < εi < 1) of the zonotope, because points on the

edges do not satisfy the (strict) ccw predictate pqr> and can only
be reached with −1 ≤ ε ≤ 1.

6.3 Reflected Corners
Step 5 of the algorithm simply reflects the already computed cor-
ners at the origin, an operation under which the orientation predi-
cate remains invariant. Because in addition to that, every zonotope
is centrally symmetric, we can deduce from lemma 6.2 that the re-
flected line segments enclose the interior of the zonotope as well.
We also have cn = −c0.

LEMMA 6.3. After step 5,
cjcj+1(

∑
i εi · ai)

> holds for −1 < εi < 1

6.4 “Postprocessing”: Continuously Relaxing CCW
In order to also include the edges into our reasoning, we define the
slightly relaxed ccw predicate pqr≥, which holds for all points on
the line through pq and for all points on the half-plane left of pq.

pqr≥ := |pqr| ≥ 0

For every segment cjcj+1, the half-planeXj = {x. cjcj+1x
≥}

is topologically closed. We know that all points from the interior are
contained in this half-plane and show that points from the edges of
the zonotope are also contained: Assume some x =

∑
i εi · ai

with −1 ≤ εi ≤ 1, i.e., x may be on the edges or in the interior.
Then define xm =

∑
i(εi · (1 −

1
m

)) · ai for m = 1, 2, . . . , we
therefore have strict inequalities −1 < εi · (1 − 1

m
) < 1, which

imply according to lemma 6.3 that xm ∈ Xj . Moreover, asm goes
to infinity, xm tends to x, and since Xj is closed, we can conclude
x ∈ Xj .

In summary, the line segments output by hull-of-zonotope de-
fine a polygon (as intersection of half-planes) that encloses the
zonotope:

THEOREM 6.4. After step 5,
cjcj+1(

∑
i εi · ai)

≥ holds for −1 ≤ εi ≤ 1

Theorem 6.4 proves that hull-of-zonotope encloses all points
of the zonotope, but not that all enclosed points actually belong to
the zonotope. We have also proved that theorem, but do not make
use of it, as we are only interested in an overapproximation of the
intersection.

6.5 Preprocessing for Generators
Recall that at the beginning of this section, we assumed the gen-
erators ai of the zonotope to be nonaligned and pointing upwards.
Given a zonotope with arbitrary generators a′i, it is easy to com-
pute a new set of generators ai that meet the above conditions and
represent the same zonotope.

Consider an element x =
∑

i εi · a
′
i with generators a′i which

point downwards, i.e., (a′i)x < 0. Set ai = −a′i and also negate εi,
then x =

∑
i εi · ai and all generators ai point upwards.

Concerning collinear generators, one can start with the first
generator a′1 and find the indices C of collinear generators, i.e.,
|0a′1a′i| = 0 for 1 < i ∈ C. Then we can set a1 = a′1 +

∑
i∈C a

′
i

and find an appropriate ε1 such that x =
∑

i εi · ai. Then recurse
on the list of remaining generators ai with i /∈ C and finally obtain
a list of generators which are pairwise not collinear, i.e., for i 6= j,
we have |0aiaj | 6= 0.

7. The Final Intersection Algorithm
Recall that the algorithm bound-intersect returns hyperplanes that
bound the intersection from above and below. The final result of our
verification can then be summarized by a short formal statement:
The intersection of a zonotope (the range of the affine form given

-8
-6

-4
-2

 0
 2

 4
 6

 8

-15-10-5 0 5 10 15

-20
-15
-10
-5
 0
 5

 10
 15
 20

x3

Z ∩ G
Z
G

x1
x2

x3

Figure 8. Intersection as it might occur in reachability analysis

by generators A = (ai)i) with a hyperplane is bounded by the
computed half-planes:

bound-intersect(A, g, c, d) = (m,M) =⇒

{a0 +
∑
i

εi · ai. − 1 ≤ ai ≤ 1} ∩ {x. 〈x, g〉 = c} ⊆

{x. m ≤ 〈x, d〉 ≤M}

The intersection is represented by half-planes, if however one
wants to continue calculating with zonotopes, it is necessary, to
choose several directions di in a way that the polytope resulting
from the intersection of all the half-planes can be represented as a
zonotope. For this purpose, one can choose for example hyperrect-
angles or parallelotopes.

8. Experiments
All of the algorithms we presented are given as functional programs
in Isabelle/HOL. We can therefore make use of Isabelle’s code
generator [9] to obtain highly trusted code in Standard ML, which
we can use to conduct some experiments and demonstrate that
our formalization can actually be used to compute intersections
of zonotopes with hyperplanes, we represent numbers by idealized
floating point numbers m · 2e for unbounded integers m, e.

We just give a short artificial example, but it is one that could
occur e.g., when computing flowpipes of differential equations and
intersecting them with hyperplanes, to perform a discrete jump in
the hybrid system. Depending on the step size, the set might be
relatively large in one direction, but small transversal to the hy-
perplane. A naive approach of projecting the set to the hyperplane
G would result in a very large overestimation, the intersection (in
this case from Basis-parallel directions) is tight, i.e. it touches the
original set in every direction. The zonotope Z in the example is
given by [(0, 0, 0); (2, 1, 0)]⊕ (5, 10, 20). The hyperplane is given
by G = {x. 〈(0, 0, 1), x〉 = 3}. Computing the intersection in this
case takes negligible time. For a more complex scenario, we created
random ten-dimensional zonotopes with fifty generators (the zono-
topes we encountered in our work on ODEs [10] are two or three
dimensional and consist of around ten generators), computing the
intersection with a random hyperplane takes 6-7 milliseconds on a
2.9 GHz laptop. Twice the number of generators requires twice as
much time, doubling the dimension also increases the amount of
time needed by a factor of two. We can therefore say that for our
purposes, the code exhibits reasonable performance and scaling be-
havior.

9. Conclusion
We needed to extend the classical ccw systems for vector spaces. A
crucial trick in the formalization was to exclude degenerate cases
by looking only at the strict interior of the zonotope. Extending
the reasoning from the interior to the whole zonotope could be
accomplished in an elegant way using continuity. The code we
extracted from our formalization exhibits reasonable performance.

9.1 Related Work
Noting that the main contribution of our work is the verification
of geometric algorithm, we can compare this work with several
other formalizations, especially with verifications of convex hull
algorithms: They all have in common that they base their reasoning
on Knuth’s notion of ccw system.

Pichardie and Bertot [17] were the first to formalize Knuth’s
ccw system and verify a functional convex hull algorithm in Coq.
Meikle and Fleuriot [15] formalized an imperative algorithm and
verified it using Hoare logic in Isabelle/HOL. Brun et al. [4] verify
an algorithm based on hypermaps to compute the convex hull.

The basic notion of a ccw system is straightforward to formal-
ize, however it excludes in its pure form “degenerate” configu-
rations of points, that is, three points lying on the same line. To
cope with these special cases, different approaches have been used:
Pichardie and Bertot give two possible solutions, one is to extend
the ccw theory with an additional predicate pqr′, which is true
whenever q lies on the line between p and r. This requires nine
additional axioms and therefore makes the abstract theory more
cumbersome to use. The second approach they formalized (and
which has been elaborated by Knuth) perturbs the points of the sys-
tem in a continuous manner to get rid of degenerate configurations,
continuity carries the results over to the degenerate case. Our ap-
proach from section 6.4 is similar in the sense that we extend results
from the nondegenerate interior of a zonotope to the frontier, which
contains degenerate points. Meikle and Fleuriot take a more prag-
matic approach and modify their algorithms to explicitly check for
collinear points.

In section 10, we digress into yet another possibility (also al-
ready described by Knuth) to refine the ccw predicate pqr> in a
consistent way for arbitrary points in the plane, and see how we can
follow Knuth’s reasoning with our formalization of ccw systems in
Isabelle/HOL. Unfortunately this approach does not directly work
for ccw systems on vector spaces.

It is worth mentioning that we restrict our attention to zono-
topes and not the more general approach of using support functions
as done by Le Guernic and Girard [14], because many algorithms
related to reachability analysis get more involved and require to
solve e.g. linear programming and other optimization problems that
are not formalized in Isabelle/HOL. Althoff and Krogh [1] propose
a way to avoid geometric computations and directly compute an
overapproximation to a zonotope/hyperplane intersection, this ap-
proach is restricted to reachability analysis of hybrid systems and
cannot be applied to zonotope/hyperplane intersections in other ap-
plications.

9.2 Future Work
We work at incorporating the intersection algorithm into our for-
mally verified tool for numerically solving ODEs [10]. Being able
to perform intersections allows us to calculate e.g., Poincaré maps
precisely and would also allow us to deal with discrete jumps given
by hyperplanes and therefore open the door to formally verified hy-
brid systems reachability analysis.

10. A Consistent CCW Predicate for Degenerate
Cases

This section is not directly related to the verification of zono-
tope/hyperplane intersection, but it is interesting as an example of
formalizing geometry.

Recall that the instantiation of a ccw system with pqr> only
worked with the additional assumption that all involved points are
not collinear. In some cases it is possible to get rid of “degenerate”
situation with some sort of preprocessing, which is what we did
in section 6.5. Here we give an alternative instantiation of ccw
systems for arbitrary points in the plane, as demonstrated in chapter
14 of Knuth’s monograph.

There Knuth proposes to refine the ccw predicate pqr> in de-
generate cases by including the lexicographic order ≺ on points.

p ≺ q := px < qx ∨ (px = qx ∧ py < qy)

The refined ccw predicate pqr∗ can then be defined as follows:

pqr∗ := pqr>∨(|pqr| = 0∧p ≺ q ≺ r∨q ≺ r ≺ p∨r ≺ p ≺ q)
And this predicate can be shown to form a ccw system for

arbitrary points in the plane. As elaborated by Knuth as well, an
important part of the reasoning is that the convex combination of
two points lies lexicographically between them:

p ≺ q ∧ 0 ≤ α ≤ 1 =⇒ p ≺ α · p+ (1− α) · q ≺ q
Knuth does not explicitly mention it, but a similar rule for

triangles is needed as well.

p ≺ q ≺ r ∧ 0 ≤ α ∧ 0 ≤ β ∧ 0 ≤ γ ∧ α+ β + γ = 1 =⇒
p ≺ α · p+ β · q + γ · r ≺ r

This rule is necessary to establish the following rules, all of
which establish some sort of consistency between the lexicographic
order and the orientation predicate. Like Knuth, we abbreviate
s ∈ ∆pqr = spq∗ ∧ sqr∗ ∧ srp∗ to express s lying inside the
triangle given by p, q, r and �pqrs = pqr∗∧qrs∗∧rsp∗∧spq∗ to
describe an oriented tetragon p, q, r, s. Then each of the following
configurations is impossible (for pairwise distinct points): first (or
second), the rightmost (or leftmost) point s lies in the triangle given
by the points p, q, r on the left (or right). Third, if p and q are left of
r and s, then the points cannot form an oriented tetragon p, r, q, s,
because two of the lines would have to cross.

p ≺ q ≺ r ≺ s ∧ s ∈ ∆pqr

s ≺ p ≺ q ≺ r ∧ s ∈ ∆spqr

p ≺ r ∧ p ≺ s ∧ q ≺ r ∧ q ≺ s ∧�prqs

As in the previous sections, transitivity of pqr∗ can be estab-
lished relatively easily algebraically, using Cramer’s rule. However,
when collinear points are involved, case distinctions are needed,
some need to derive new collinearities, e.g., if q lies on a line
with tp and on a line with tr, then r and p are on the same line:
|tpq| = |tqr| = 0 =⇒ |trp|.

In addition it is necessary to rule out configurations which
are according to Knuth’s presentation without further elaboration
just “impossible”, but require careful formal proof. Consider e.g.
t, s, r, p aligned and q not aligned according to tpq> and tqr>.
This configuration can be realized, and is only impossible by inves-
tigating subtle contradictions given by the possible lexicographic
orderings of t, s, r, p in the context of the proof.

Other important lemmas that are not mentioned by Knuth are
needed for translating the corner of a ccw turn, which of course
only works when translating in one direction, which is why the
lexicographic order is needed:

|trs| = 0 ∧ t ≺ r ≺ s ∧ trp> =⇒ tsp>

Acknowledgments
This work has been supported by DFG RTG 1480 (PUMA). I would
like to thank Lars Hupel, Johannes Hölzl, and the anonymous
reviewers for providing helpful feedback on earlier versions of this
paper.

References
[1] M. Althoff and B. H. Krogh. Avoiding geometric intersection opera-

tions in reachability analysis of hybrid systems. In Proceedings of the
15th ACM International Conference on Hybrid Systems: Computation
and Control, HSCC ’12, pages 45–54, New York, NY, USA, 2012.
ACM. ISBN 978-1-4503-1220-2. .

[2] M. Althoff, O. Stursberg, and M. Buss. Computing reachable sets
of hybrid systems using a combination of zonotopes and polytopes.
Nonlinear Analysis: Hybrid Systems, 4(2):233 – 249, 2010. ISSN
1751-570X. . {IFAC} World Congress 2008.

[3] O. Bouissou, A. Chapoutot, and A. Djoudi. Enclosing temporal evo-
lution of dynamical systems using numerical methods. In G. Brat,
N. Rungta, and A. Venet, editors, NASA Formal Methods, volume 7871
of Lecture Notes in Computer Science, pages 108–123. Springer Berlin
Heidelberg, 2013. ISBN 978-3-642-38087-7. .

[4] C. Brun, J.-F. Dufourd, and N. Magaud. Designing and proving correct
a convex hull algorithm with hypermaps in Coq. Computational
Geometry, 45(8):436 – 457, 2012. ISSN 0925-7721. . Geometric
Constraints and Reasoning.

[5] L. de Figueiredo and J. Stolfi. Affine arithmetic: Concepts and appli-
cations. Numerical Algorithms, 37(1-4):147–158, 2004. ISSN 1017-
1398. .

[6] A. Girard. Reachability of uncertain linear systems using zonotopes.
In M. Morari and L. Thiele, editors, Hybrid Systems: Computation and
Control, volume 3414 of Lecture Notes in Computer Science, pages
291–305. Springer Berlin Heidelberg, 2005. ISBN 978-3-540-25108-
8. .

[7] A. Girard and C. Le Guernic. Zonotope/hyperplane intersection for
hybrid systems reachability analysis. In M. Egerstedt and B. Mishra,
editors, Hybrid Systems: Computation and Control, volume 4981 of
Lecture Notes in Computer Science, pages 215–228. Springer Berlin
Heidelberg, 2008. ISBN 978-3-540-78928-4. .

[8] E. Goubault and S. Putot. Static analysis of numerical algorithms.
In K. Yi, editor, Static Analysis, volume 4134 of Lecture Notes in
Computer Science, pages 18–34. Springer Berlin Heidelberg, 2006.
ISBN 978-3-540-37756-6. .

[9] F. Haftmann and T. Nipkow. Code generation via higher-order rewrite
systems. In M. Blume, N. Kobayashi, and G. Vidal, editors, Func-
tional and Logic Programming, volume 6009 of Lecture Notes in
Computer Science, pages 103–117. Springer Berlin Heidelberg, 2010.
ISBN 978-3-642-12250-7. .

[10] F. Immler. Formally verified computation of enclosures of solu-
tions of ordinary differential equations. In J. Badger and K. Rozier,
editors, NASA Formal Methods, volume 8430 of Lecture Notes in
Computer Science, pages 113–127. Springer International Publishing,
2014. ISBN 978-3-319-06199-3. .

[11] F. Immler. Affine arithmetic. Archive of Formal Proofs,
2015. ISSN 2150-914x. http://afp.sf.net/entries/Affine_
Arithmetic.shtml, Formal proof development.

[12] F. Immler. Affine arithmetic. Archive of Formal Proofs,
Jan. 2015. http://afp.sf.net/devel-entries/Affine_
Arithmetic.shtml, Formal proof development.

[13] D. Knuth. Axioms and Hulls. Springer, Berlin New York, 1992.
Number 606 in Lecture Notes in Computer Science.

[14] C. Le Guernic and A. Girard. Reachability analysis of hybrid systems
using support functions. In A. Bouajjani and O. Maler, editors, Com-
puter Aided Verification, volume 5643 of Lecture Notes in Computer
Science, pages 540–554. Springer Berlin Heidelberg, 2009. ISBN 978-
3-642-02657-7. .

[15] L. Meikle and J. Fleuriot. Mechanical theorem proving in computa-
tional geometry. In H. Hong and D. Wang, editors, Automated De-
duction in Geometry, volume 3763 of Lecture Notes in Computer Sci-
ence, pages 1–18. Springer Berlin Heidelberg, 2006. ISBN 978-3-540-
31332-8. .

[16] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A proof
assistant for Higher-Order Logic. Number 2283 in Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2002. ISBN 978-3-
540-43376-7.

[17] D. Pichardie and Y. Bertot. Formalizing convex hull algorithms. In
R. Boulton and P. Jackson, editors, Theorem Proving in Higher Order
Logics, volume 2152 of Lecture Notes in Computer Science, pages
346–361. Springer Berlin Heidelberg, 2001. ISBN 978-3-540-42525-
0. .

