
J Autom Reasoning manuscript No.
(will be inserted by the editor)

A Verified ODE Solver and the Lorenz Attractor

Fabian Immler

Received: date / Accepted: date

Abstract A rigorous numerical algorithm, formally verified with Isabelle/HOL, is
used to certify the computations that Tucker used to prove chaos for the Lorenz
attractor.

The verification is based on a formalization of a diverse variety of mathematics
and algorithms. Formalized mathematics include ODEs (ordinary differential equa-
tions) and Poincaré maps. Algorithms include low level approximation schemes based
on Runge-Kutta methods and affine arithmetic. On a high level, reachability anal-
ysis is guided by static hybridization and adaptive step-size control and splitting.
The algorithms are systematically refined towards an implementation that can be
executed on Tucker’s original input data.

Keywords Isabelle/HOL · Ordinary Differential Equation · Rigorous Numerics ·
Poincaré Map · Lorenz Attractor

1 Introduction

Computer assisted proofs, i.e., mathematical proofs that rely on the output of a
computer program, depend crucially on the correctness of the program. Important
computer assisted proofs for e.g., the Kepler conjecture or the Four Color Theo-
rem, have therefore been formally verified. In this article, we consider the Lorenz
attractor—perhaps one of the most prominent examples of deterministic chaos—
and its computer assisted proof by Warwick Tucker. The proof relies on a rigorous
numerical ODE (ordinary differential equation) solver. In this article, we describe
the long-term project of formally verifying (in Isabelle/HOL [39]) an ODE solver
that is capable of certifying Tucker’s computations.

Fabian Immler
Institut für Informatik, Technische Universität München
E-mail: immler@in.tum.de

2 Fabian Immler

1.1 History

In 1963, meteorologist Edward Lorenz [31] introduced a system of ODEs as a sim-
plified model for atmospheric dynamics. He observed that even the smallest pertur-
bation in initial values would lead to completely different long-term behavior of the
system. Referring to the original motivation, he asked: “Does the Flap of a But-
terfly’s Wings in Brazil Set Off a Tornado in Texas?” and the term butterfly effect
entered popular culture. The Lorenz system tends to evolve to a complicated struc-
ture (figure 2), which became an iconic example of deterministic chaos: According to
Sparrow [45] “the number of man, woman, and computer hours spent on [the Lorenz
equations . . .] must be truly immense”. Despite its popularity and the amount of
effort put into its study, nobody managed to prove that the Lorenz attractor is
chaotic in a rigorous mathematical sense. The problem of rigorously proving chaos
in the Lorenz attractor even made it into a list of 18 important problems for the 21st
century that Field’s medalist Stephen Smale composed in 1998 [43].

Shortly after, Warwick Tucker managed to give an affirmative answer by pre-
senting a computer-assisted proof [47,48]. Tucker’s programs were written in C++
and are not formally verified. Tucker even discovered (and fixed) some bugs in it [49,
46]. Formal verification of the numerical results needed for the proof is therefore a
worthwhile goal.

1.2 The Lorenz Attractor

We start with describing the Lorenz attractor and some of the properties that were
conjectured from numerical simulations. In his proof, Tucker considers the following
three dimensional ODE1 for fixed parameters k1,2,3, λ1,2,3:

ẋ = λ1x− k1(x+ y)z
ẏ = λ2y + k1(x+ y)z
ż = λ3z + (x+ y)(k2x+ k3y)

As intuition, an ODE describes the velocity vector (ẋ, ẏ, ż) in which a particle at
a point (x, y, z) moves. The evolution of a particle subject to the ODE is described
by the so-called flow φ. A particle x0 ∈ Rn will be at position φ(x0, t) after time
t ∈ R.

Figure 1 depicts the numerical simulation of the evolution of a particle starting
at (0.1, 0, 0): It moves to right (x ≈ 15) and up (z ≈ 50) at time t ≈ 0.5, then down
to about z = 27 and oscillates with increasingly larger amplitude around z = 27.
Figure 2 depicts the trace of a long-term evolution in the three dimensional phase
space, it indicates property 1:

Property 1 Solutions remain in a bounded region of the phase space.

Particles that approach the origin (0, 0, 0) from above exhibit a very sensitive de-
pendence on initial conditions: a slight perturbation can make the particle flow to
either the left or right branch of the Lorenz attractor, which we call property 2:

1 that is, Lorenz’ original equations for the classical parameters β = 8
3 , σ = 10, ρ = 28 in

Jordan normal form using τ :=
√

(σ + 1)2 + 4σ(ρ− 1), k1 := σ
τ
, k2 := σ−1+τ

2σ , k3 := σ−1−τ
2σ ,

λ1 := −σ−1+τ
2 , λ2 := −σ−1−τ

2 , and λ3 := −β

A Verified ODE Solver and the Lorenz Attractor 3

���
��
��
��

���
���
���
���
���
���
���
���
���

�� �� �� �� �� ��

�

�
�
�

Fig. 1 Temporal evolution of t 7→ φ((0.1, 0, 0), t)

���
���

��
��

��
���

������
��

��
��

�����

��

���

���

���

���

���

���

���

���

���

�

	

� �

�

Fig. 2 Simulation of a part of the Lorenz attractor (φ) and Poincaré section (Σ).

4 Fabian Immler

Property 2 Solutions exhibit sensitive dependence on initial conditions.

This dependence is such that arbitrarily small initial sets will eventually spread over
the whole attractor.

1.3 Tucker’s Proof

How does Tucker go about proving those properties? First of all, he uses a standard
technique: he introduces a so-called Poincaré section. This is a distinguished set in
the phase space, in this case a square on the plane z = 27, namely Σ = [−6, 6] ×
[6, 6]× {27}. Compare also figure 2.

On a Poincaré section Σ, one defines the so-called Poincaré map P : For a particle
x0 ∈ Σ, the Poincaré map P (x0) is the point where the flow first returns to Σ. This
reduces the three-dimensional, continuous dynamics φ to (discrete) iterations of the
two-dimensional map P . Tucker then analyzes the dynamics of P .

Trapping Region. Regarding property 1, Tucker proves that there is a (compact)
trapping region N ⊆ Σ, such that solutions starting in N will remain in N . He
does so by subdividing N into a large number of small rectangles. For every small
rectangle, Tucker’s program computes safe numeric bounds for all solutions evolving
from the small rectangle. In a number of time-discretization steps, the evolution
is followed until it eventually returns to Σ. Upon return, the program checks that
the returned enclosure is contained in N . If this process succeeds for every small
rectangle, one can conclude the following theorem.

Theorem 1 (Trapping Region) ∀x ∈ N − Γ. P (x) ∈ N

Note that there exists a set Γ on which P is not defined: Γ is the set of points, from
which solutions tend to the origin in infinite time. Γ is therefore explicitly excluded
in the above theorem.

Sensitive Dependence. Regarding property 2, sensitive dependence on initial condi-
tions can be quantified with the help of the derivative: A deviation in the direction
of a vector v ∈ R2 is propagated (in linear approximation) like the derivative at x,
i.e., P (x+ v) ≈ x+ DP |x · v. Here DP |x · v is the matrix of partial derivatives of P
(the Jacobian matrix) at the point x, multiplied with the vector v.

A mathematically precise notion of chaos is given by the class of singular hy-
perbolic systems [36]. The term singular denotes the special case where the system
contains a hyperbolic fixed point (which renders P undefined on Γ). A hyperbolic
system contracts deviations in stable directions and expands deviations in unstable
directions. Both are relevant for the dynamics of the attractor: Stable directions
make solutions tend to the attractor, whereas unstable directions lead to sensitive
dependence on initial conditions.

Tucker proves that the Lorenz attractor is hyperbolic (in fact singular hyperbolic,
we discuss how the hyperbolic fixed point is addressed with normal form theory in
the next paragraph) by providing safe overapproximations for the unstable direction:
Every x ∈ N is equipped with a cone C(x) (compare figure 3), which contains the
unstable direction. This is also verified by Tucker’s computer program: In addition
to the Poincaré map, the program keeps bounds on its matrix of partial derivatives.

A Verified ODE Solver and the Lorenz Attractor 5

The program tracks how initial deviations (inside the cone associated to an initial
rectangle) are propagated by the derivative DP . The cone field needs to be forward
invariant (otherwise it would not contain the unstable direction) and the expan-
sion needs to be large enough that the enclosed directions are actually expanding.
Tucker’s program establishes factors E(x) and E−1(x), which quantify the expansion
properties of P :

Theorem 2 (Derivatives, Cones, and Expansion)
1. ∀x ∈ N − Γ. ∀v ∈ C(x). DP |x · v ∈ C(P (x))
2. ∀x ∈ N − Γ. ∀v ∈ C(x). ‖DP |x · v‖ ≥ E(x) |v|
3. ∀x ∈ N − Γ. ∀v ∈ C(x). ‖DP |x · v‖ ≥ E−1(P (x)) ‖v‖

This theorem states that 1., the cone field C is forward invariant under the action of
the derivative of P : the image of every cone is slimmer than the cones onto which they
are mapped. 2., the vectors v satisfy lower bounds on how much they are expanded:
the length ‖DP |x · v‖ of the return of the deviation vector v is lower bounded by
its length ‖v‖ times an expansion factor E(x). They also satisfy a pre-expansion
bound E−1(x) (this does not denote 1

E) for the pre-image of x, which is required for
technical reasons in Tucker’s proof.

Normal Form Theory. For the Lorenz equations, the origin (0, 0, 0) is a hyperbolic
fixed point. The origin is a fixed point, because the ODE evaluates to 0. It is hyper-
bolic, because solutions tend to it in the two stable directions given by the y and z
axis and expands in the unstable direction given by the x-axis.

This hyperbolic fixed point poses problems for the aforementioned approach of
using rigorous numerical methods: there are solutions that tend to the origin as
time goes to infinity. In such a situation, a time-discretization algorithm is at a
loss, because it would need infinitely many steps. To remedy this problem, Tucker’s
program interrupts computations in a small cube L = [−0.1, 0.1] × [−0.1, 0.1] ×
[−0.1, 0.1] around the origin. Inside the cube, where the numerical methods would
fail, the evolution of solutions can be described with classical, analytical means: more
than half of Tucker’s thesis is devoted to accurate analytical expressions for the flow
inside the cube L. These expressions can be used to provide explicit bounds on how
solutions exit the cube L and continue with numerical computations.
Informal Theorem 3 There is an explicit form that bounds the dynamics inside
the cube L = [−0.1, 0.1]× [−0.1, 0.1]× [−0.1, 0.1].

1.4 Outline of This Article

This article is about the formalization of a rigorous ODE solver that computes the
Poincaré map P and its derivative DP . It is sufficiently efficient and precise to cer-
tify Tucker’s numerical results. In particular, computing with the verified algorithm
proves theorems 1 and 2. In fact, also figure 3 was created from the output of this
verified algorithm.

As a matter of course, since the ODE solver computes Poincaré maps and deriva-
tives thereof, it is proved correct with regard to a formalization of these concepts
in Isabelle/HOL. This formalization, as well as the verified algorithms are generic:
they are independent of the underlying ODE or dimension.

6 Fabian Immler

��

����

��

����

��

�� ���� �� ���� �� ���� ��

�

�

����

����

����

����

����

��

����� ���� ����� ���� ����� ����

�

�

Fig. 3 Enclosures for the flow and cones evolving from X0 = [4.375, 4.4]× [2.77, 2.79]× {27}
with a representation of a cone between 1.5◦ and 11.5◦ (detail on the right).

This article summarizes previous work of the author (and contributions by Jo-
hannes Hölzl and Christoph Traut) [18,19,20,21,22,23,24,25,26] and describes the
state of the formalization to which it evolved over time. It shows how the various
parts fit together for the final result of certifying Tucker’s computations. The fol-
lowing explains how this article is structured and details on the relation to earlier
publications.

The abstract mathematics needed for the formalization is a theory of ODEs and
Poincaré maps together with their (differentiable) dependence on initial conditions.
This is presented in section 2, which summarizes a more comprehensive journal arti-
cle [25], in which the author extends the conference paper [26] with a formalization of
Poincaré maps. The foundations, in particular existence and uniqueness of solutions
was proved in [23].

Tucker used the library Profil/BIAS for an implementation of the Euler method
in interval arithmetic. Our approach to rigorous numerics is at first agnostic about
the concrete type of enclosures (section 3). The main instantiation, affine arithmetic,
is presented in section 3.4. Parts of this section were part of earlier publications [21,
18].

When working with affine arithmetic, the enclosures are zonotopes (centrally
symmetric polytopes) instead of intervals. Because zonotopes are a more complex
than intervals, geometric operations like intersections with the Poincaré section Σ are
more challenging. The verification leads to a digression into computational geometry
in section 4, which is based on an earlier publication [19].

Tucker’s program adaptively splits reachable sets and therefore maintains a col-
lection of sets. Section 5 describes how we formalize generic data structures to main-
tain such collections and use stepwise refinement from nondeterministic abstract
specifications to a concrete deterministic implementation. This has not been pub-
lished before.

A more ad-hoc formalization of similar algorithms has been described in earlier
work [21], which forms the basis of section 6. Here the presentation is w.r.t. the new,
generic framework and extended for derivatives of Poincaré maps.

A Verified ODE Solver and the Lorenz Attractor 7

Section 7 is a novel contribution: it describes how the trapping region N , the
cone field C and the expansion estimates E , E−1 are defined formally and how the
verified ODE solver is set up to certify the results of all of Tucker’s computations.
Earlier work [20] was not capable of handling derivatives, and had no formalization
of Poincaré map.

All of the development described here is available for Isabelle2017 in the Archive
of Formal Proof [22,24]. In particular everything displayed as Theorem possesses a
formal counterpart.

2 Mathematics

The required mathematical background consists of mostly standard results which can
be found in every textbook on ODEs and dynamical systems. Thanks to a sufficient
background theory, the formalization can mostly follow the presentations in such
textbooks. We therefore focus on peculiarities of our formalization which are due
to Isabelle/HOL and its type system, in particular the use of type classes and the
lack of dependent types. Because of the type class based formalization of topological
structures, type definitions are used to formalize function spaces, where the Transfer
and Lifting tools [15] provide excellent support. Moreover, there are no dependent
types in Isabelle/HOL. In situations where this would be more natural, an encoding
(e.g., ext-cont in the following section 2.1.2) is necessary.

2.1 Type Classes for Mathematics in Isabelle/HOL

In Isabelle/HOL, many of the mathematical concepts (in particular spaces with a
certain structure) are formalized using type classes. Isabelle/HOL features axiomatic
type classes [38,11]. The purpose of an axiomatic type class is to specify operations
which satisfy given properties for a class of types. The advantage of type class based
reasoning is that most of the reasoning is generic: formalizations are carried out in
the context of type classes and can then be used for all types inhabiting that type
class.

For generic formalizations, we use Greek letters α, β, γ and name their type class
constraints in prose. I.e., when we write that we “consider a topological space” α,
then this result is formalized generically for every type α that fulfills the properties
of a topological space.

The spaces we consider are topological spaces with open sets, (real) vector spaces
with addition + : α → α → α and scalar multiplication (_)(_) : R → α → α.
Normed vector spaces come with a norm |(_)| : α → R. Complete normed vector
spaces are called Banach spaces. Much of the theory has been ported from Harrison’s
theory of Euclidean space [12] and has been generalized to the hierarchy of type
classes for mathematics in Isablle/HOL [14].

2.1.1 Vectors in Euclidean Space

Because of Isabelle/HOL’s restrictive type system (no dependent types), the abstract
concept of vectors is notorious for demanding workarounds. In Isabelle/HOL, one
tends to use a type class based encoding. We work with a type class for Euclidean

8 Fabian Immler

space that fixes an order on the Basis elements and therefore enables operations
eucl-of-list : R list → α and list-of-eucl : α→ R list if α is a Euclidean space.

All (finite) vectors of real numbers are instances of the class Euclidean space.
This includes real numbers R, complex numbers C, tuples α×β for Euclidean spaces
α, β, and Harrison-style2 [12] vectors αι for a finite type ι.

2.1.2 Bounded Continuous Function

We motivate bounded continuous functions with the Picard-Lindelöf theorem, which
guarantees the existence of a unique solution to an initial value problem. For an ODE
f with initial value x0 at time t0, a unique solution on the time interval [t0, t1] is con-
structed by considering iterations of the following operator for continuous functions
φ : [t0, t1]→ Rn:

P (φ) :=
(
λt. x0 +

∫ t

t0

f(τ, φ(t)) dτ
)

From a mathematician’s point of view, P operates on the Banach space of contin-
uous functions on the compact domain [t0, t1] and therefore the Banach fixed point
theorem guarantees the existence of a unique fixed point (which is by construction
the unique solution).

In order to formalize this in Isabelle/HOL, there are two obstructions to over-
come: First, the concept of Banach space is a type class in Isabelle/HOL, so we need
to introduce a type for the mappings φ : [t0, t1] → Rn from above. But this poses
the second problem: functions in Isabelle/HOL are total and types must not depend
on term parameters like t0 and t1.

We work around these restrictions by introducing a type of bounded continuous
functions, which is a Banach space and comprises (with a suitable choice of repre-
sentations) all continuous functions on all compact domains.

typedef α→bc β := {f : Rn → Rm | f continuous on α ∧ (∃B. ∀t. ‖f t‖ ≤ B)}

In order to define operations on type α →bc β, the Lifting and Transfer pack-
age [15] is an essential tool: operations on the plain function type α → β are au-
tomatically lifted to definitions on the type α →bc β when supplied with a proof
that functions in the result are bounded continuous under the assumption that ar-
gument functions are bounded continuous. We write application $bc of a bounded
continuous function f : α→bc β to an element x : α as follows.

Definition 1 (Application of Bounded Continuous Functions)

(f $bc x) : β

Bounded continuous functions form a normed vector space. The norm on α→bc β is
the supremum of the range and the vector space operations +, · are defined pointwise.

2 Vectors of length n are represented by a type of functions ι → α, where n equals the
cardinality of the finite type ι.

A Verified ODE Solver and the Lorenz Attractor 9

Definition 2 (Normed Vector Space of Bounded Continuous Functions)

‖f‖ := sup {‖f $bc x‖ | x ∈ α}
(f + g) $bc x := f $bc x+ g $bc x
(a · f) $bc x := a · (f $bc x))

The type →bc with the above operations forms a complete normed vector space
(a Banach space). This allows us to use the Banach fixed point theorem for operators
on this type.

In order to be able to use this for the operator P from above, we represent
functions on a compact interval [a, b] as an element of type →bc by extending the
function continuously outside the domain with the help of clamp :

clamp [a,b] x := if x ≤ a then a else (if x ≥ b then b else x)
(ext-cont [a,b] f) $bc x := f (clamp [a,b] x))

With the help of ext-cont we can apply P : (R →bc Rn) → (R →bc Rn) to a
continuous function φ : R → Rn (that is assumed to be continuous on an interval
[a, b]) by writing P (ext-cont [t0,t1]φ). According to the Banach fixed point theorem
there exists a unique fixed point φbc : R→bc Rn where P (φbc) = φbc and the unique
solution of the initial value problem is the function λt. φbc $bc t of type R→ Rn.

The usage of the type →bc caused minor technical obstructions, but otherwise
enabled a natural and abstract proof.

2.1.3 Bounded Linear Functions

Similar to the type of bounded continuous functions, we also introduce a type of
bounded linear functions (also known as continuous linear functions)

For vector spaces α and β, a linear function is a function f : α → β that is
compatible with addition and scalar multiplication.

linear f := ∀x y c. f(c · x+ y) = c · f(x) + f(y)

Let us assume normed vector spaces α and β. Linear functions are continuous if
the norm of the result is linearly bounded by the norm of the argument. We cast
bounded linear functions α → β as a type α →bl β in order to make it an instance
of Banach space.

typedef α→bl β := {f : α→ β | linear f ∧ ∃K. ∀x. ‖f(x)‖ ≤ K‖x‖}

The construction is very similar to bounded continuous functions and we write
bounded linear function application (f ·bl x). Vector space operations are also analo-
gous to→bc . The usual choice of a norm for bounded linear functions is the operator
norm: the maximum of the image of the bounded linear function on the unit ball.
With this norm, α→bl β forms a normed vector space and we prove that it is Banach
if α is a normed vector space and β is Banach.

Definition 3 (Norm in Banach Space →bl) For f : α→bl β,

‖f‖ := onorm (λy. f ·bl y) = max {‖f ·bl y‖ | ‖y‖ ≤ 1}

10 Fabian Immler

Having (bounded) linear functions as a separate type makes many formulations
easier. For example, consider Harrison’s formalization of multivariate analysis (from
which Isabelle/HOL’s analysis descended). In Harrison’s formalization continuity is
formalized for functions f of type Rn → Rm.

(continuous f (at x)) = (∀e > 0. ∃d > 0. ∀y. ‖x− y‖ < d =⇒ ‖f x− f y‖ < e)

Most of Harrison’s formalization is geared towards viewing derivatives as linear func-
tions of type Rn → Rm. For continuously differentiable functions, one therefore needs
to reason about functions f ′ : Rn → (Rn → Rm), where f ′ x is the derivative of
f at a point x. Continuity of f ′ is written in an explicit ε-δ form and involves the
operator norm onorm : (Rn → Rm)→ R, which is quite verbose:

(∀e > 0. ∃d > 0. ∀y. |x− y| < d =⇒ onorm (λv. f ′ x v − f ′ y v) < e))

The ε-δ form could of course be captured in a separate definition, but this would be
very similar to the definition of continuity and would introduce redundancy.

In the Isabelle/HOL formalization, continuous is defined for functions f : α→ β
for topological spaces α and β. If α and β are normed vector spaces, the above
equality for continuous holds in Isabelle/HOL, too. And indeed, the norm of bounded
linear functions is defined using onorm such that onorm (λv. (f ′ x)·bl v−(f ′ y)·bl v) =
‖f ′x − f ′y‖ holds. Then, continuity of a derivative f ′ : α → (α →bl β) can simply
be written as (continuous f ′ (at x)), which is a better abstraction to work with and
also avoids redundant formalizations for different kinds of continuity.

2.2 Dynamical Systems

An ODE induces a continuous dynamical system via the notion of flow. A standard
technique to reason about such systems is its Poincaré map. We keep the presentation
at a high level, since details can be found in the publications [25,26].

2.2.1 The Flow

We consider an autonomous ODE with right hand side f . Under mild assumptions,
there exists a solution φ(t), which is unique for an initial condition x(0) = x0 and
satisfies the differential equation:

ẋ(t) = f(x(t))

To emphasize the dependence on the initial condition, one writes φ(x0, t) for the solu-
tion. This solution depending on initial conditions is called the flow of the differential
equation:

Definition 4 (Flow) The flow φ(x0, t) is the (unique) solution of the ODE ẋ(t) =
f(x(t)) with initial condition φ(0) = x0

The flow is only well-defined on the so-called existence interval of the solution,
which depends on the initial value.

Definition 5 (Existence Interval) t ∈ ex-ivl (x0) =⇒ φ̇(x0, t) = f(φ(x0, t))

A Verified ODE Solver and the Lorenz Attractor 11

The flow φ and the existence interval ex-ivl provide a clean interface to talk about
solutions of ODEs. The property of the generic notion of flow makes it possible to
easily state composition of solutions and to algebraically reason about them. Flowing
from x0 for time s+ t is equivalent to first flowing for time s, and from there flowing
for time t:

Theorem 4 (Flow property)

{s, t, s+ t} ⊆ ex-ivl (x0) =⇒ φ(x0, s+ t) = φ(φ(x0, s), t)

For Tucker’s proof, one needs to study how sensitive the flow depends on per-
turbations of the initial value. We use two main results: One, the flow depends
continuously on initial values. Two, if the ODE f is continuously differentiable, then
so is the flow. We first take a look at the domain Ω = {(x, t) | t ∈ ex-ivl (x)} ⊆ X×T
of the flow. (t, x) ∈ Ω means that we can flow a point starting at x for at least time
t. Intuitively, solutions starting close to x can be followed for times that are close to
t. In topological parlance, the state space is open.

Theorem 5 (Open State Space) openΩ

One can show that solutions deviate at most exponentially fast: ∃K. ‖φ(x, t) −
φ(y, t)‖ < ‖x − y‖eK|t| (using Grönwall’s lemma). Therefore, by choosing x and y
close enough, one can make the distance of the solutions arbitrarily small. In other
words, the flow is a continuous function on the state space:

Theorem 6 (Continuity of Flow) continuous-on Ω φ

Continuity states that small deviations in the initial values result in small devi-
ations of the flow. One can be more precise on the way initial deviations propagate.
The propagation of initial deviations through the flow (φt := λx. φ(x, t)) can be
approximated by a linear function, the derivative Dφ|x · v ≈ φ(x, t)− φ(x+ v, t).

We formalize the fact that the derivative of the flow is the solution of a differential
equation in the space of bounded linear mappings, the so-called variational equation.

Theorem 7 (Variational Equation){
Ẇ (t) = Df |φ(x0,t) ·bl W (t)
W (0) = 1bl

Solving this ODE numerically gives a means to obtain numerical bounds on the
derivative, which is the approach that we pursue in our algorithms.

2.2.2 The Poincaré Map

The Poincaré map is an important tool for studying dynamical systems. Whereas
the flow describes the evolution of a continuous system with respect to time, it is
the Poincaré map that allows us to study the evolution with respect to some space
variables. A Poincaré section is a subset Σ of the state space, which is in general
given as an implicit surface Σ = {x | s(x) = c} with continuously differentiable s.
For Tucker’s proof, one chooses s(x, y, z) = z and c = 27.

12 Fabian Immler

The Poincaré map P (x) is defined as the point where the flow starting from x
first hits the Poincaré section Σ. It is defined with the help of the first return time
τ(x). τ depends on the flow φ (and therefore on the ODE f) and the Poincaré section
Σ, but we keep those dependencies implicit.

Definition 6 (First Return Time) τ(x) is the least t > 0 such that φ(x, t) ∈ Σ.

Obviously, τ is only well-defined for values that actually return to Σ, which we
encode in the predicate returns-to :

Definition 7

returns-to (Σ, x) := ∃t > 0. φ(x, t) ∈ Σ

The return time can then be used to define the Poincaré map as follows:

Definition 8 (Poincaré map)

P (x) := φ(x, τ(x))

It is interesting to note that this way of defining the return time and Poincaré
map differs from the usual approach in textbooks. Textbooks study Poincaré maps
in a neighborhood around a periodic point x ∈ Σ, i.e., P (x) = x. This makes it
easy to directly apply the implicit function theorem and transfer continuity and
differentiability from the flow to the Poincaré map while guaranteeing that τ and P
are well-defined. Also, one views P as a mapping on Σ, i.e. P : Σ → Σ.

Tucker’s proof, however, requires a more flexible notion of Poincaré map and
our notion of τ is more flexible: it is well-defined also for values outside of Σ. This
enables reasoning about intermediate sections: Tucker, e.g., composes a sequence of
local Poincaré maps between intermediate sections Σ,Σ1, · · · , Σn, Σ in order to get
bounds on the global Poincaré map Σ → Σ.

The goal of Tucker’s computations is a sensitivity analysis of the flow of the
Lorenz system and of its Poincaré map. Its derivative can be given in terms of the
derivative of the flow and the function s defining the implicit surface for Σ = {x |
s(x) = c}.

Theorem 8 (Derivative of Poincaré map)

DP |x · h = Dφ|(x,τ(x)) · h−
Ds|P (x) · (Dφ|(x,τ(x)) · h)

Ds|P (x) · (f(P (x))) f(P (x))

For a rough intuition, the derivative DP |x · h of the Poincaré map is related to
the derivative of the flow Dφ|(x,τ(x)) · h. But it needs to corrected in the direction
f(P (x)) in which the flow passes through Σ, because P varies only on Σ and not
through it. This correction factor also depends on the tangent space Ds|P (x)) of the
section Σ at P (x).

A Verified ODE Solver and the Lorenz Attractor 13

3 Rigorous Numerics

Rigorous (or guaranteed) numerics means computing with sets that are guaranteed to
enclose the real quantities of interest. Enclosures can in principle be any data struc-
ture that represents sets of real values. Popular choices are intervals, zonotopes, or
Taylor models. For formalizations, it is useful to have a deep embedding of arith-
metic expressions as done, e.g., by Dorel and Melquiond [34] as well as Hölzl [13].
This work builds on Hölzl’s language of arithmetic expressions given in excerpts in
figure 4.

aexp = Add aexp aexp
| Mult aexp aexp
| Minus aexp
| Inverse aexp
| Num R
| Var N
| . . .

[[Add a b]]vs = [[a]]vs + [[b]]vs
[[Mult a b]]vs = [[a]]vs · [[b]]vs
[[Minus a]]vs = −[[a]]vs

[[Inverse a]]vs = 1/[[a]]vs
[[Num r]]vs = r
[[Var i b]]vs = vs ! i

. . .

Fig. 4 Data type of arithmetic expressions and interpretation function (λe xs. [[e]]xs) : aexp →
R list → R

Independent of the choice of representation of enclosures, a rigorous approxima-
tion scheme approx needs to satisfy that for all lists of real values xs in an enclosure
XS, the interpretation [[e]]xs of the expression e is contained in the result of approx-
imation scheme evaluated for the enclosure XS. We could call this the fundamental
property of rigorous numerics.

x ∈ XS =⇒ [[e]]xs ∈ approx e XS

The key approach in our formalization is to remain agnostic about the concrete
approximation scheme as long as possible and formalize results on the level of deeply
embedded aexp expressions. The central result is an implementation of a second
order Runge-Kutta method on the level of aexp expressions. As concrete instance
for an approximation scheme approx , we use affine arithmetic [6], an improvement
over interval arithmetic that tracks linear dependencies between program variables.

3.1 Expressions for Vectors

To represent vectors, we use lists of expressions. A list of expressions es : aexp list
is interpreted with (λes vs. [[es]]vs) : aexp list → R list → α componentwise as
Euclidean space α:

[[es]]vs = eucl-of-list (map (λe. [[e]]vs) es)

In contrast to the interpretation, approximation of a list of expressions should
not be componentwise: an approximation function for lists of expressions should be
of type approx : aexp list → R list set → R list set , which allows approx to keep
track of dependencies between the components of the result. If the type were e.g.,
aexp list → R set list → R set list , this could only represent the Cartesian product
of the component enclosures.

14 Fabian Immler

For a function f : Rn → Rm, a deep embedding fe is a list of expressions (of
length m), that is interpreted over a list of n variables.

[[fe]]xs = f(eucl-of-listxs)

The derivatives with respect to one variable can be computed symbolically from the
structure of the expression. This can also be used to compute partial derivatives on
the level of expressions. In the multivariate setting, the derivative Df |x of f at x
is the matrix of its partial derivatives. In general, we can represent matrices as a
flat list (according to eucl-of-list /list-of-eucl which are also defined for matrices). For
computing derivatives, however, we directly produce an expression that is interpreted
as the product of the derivative matrix with a vector:

[[De(n, fe, ve)]]xs := Df |eucl-of-list xs ·bl [[ve]]xs

De takes the derivative with respect to the first n variables, and xs is assumed to
be of length at least n. This way, we can produce expressions for higher derivatives:

D0
e(n, fe, ve) :=fe

Di+1
e (n, fe, ve) :=De(n,Di

e(n, fe, ve), ve)

Note that the proper interpretation can only be expressed in Isabelle’s type
system for fixed values of i: the resulting object is an i-linear function, so the resulting
type depends on a term argument. This could also be encoded as functions taking
lists as arguments, but fixed values of i suffice for our purposes and we find the
interpretation as curried linear mappings more natural. E.g.,

[[D0
e(n, fe, ve)]]x =[[fe]]x

[[D1
e(n, fe, ve)]]x =Df |eucl-of-list x ·bl [[ve]]

[[D2
e(n, fe, ve)]]x =D(λy. Df |y)|eucl-of-list x ·bl [[ve]] ·bl [[ve]]

· · ·

3.2 A Runge-Kutta Method

On the level of expressions, we verified a two-stage Runge-Kutta method rk h(x) =
x + h · ψh(x), with ψh(x) = (1 − 1

2p)f(x) + 1
2pf(x + hpf(x)). This Runge-Kutta

method rk h(x0) approximates the solution up to third order: |φ(x0, h)− rk h(x0)| ∈
O(h3). The third order term stems from (multivariate) Taylor series expansions of
the solution φ and the approximation scheme rk h. If we set f ′ := λx. Df |x and
f ′′ := λx. Df ′|x, then the remainder is contained in the convex hull of any set that
contains rk-remainder h(s1, s2) for all s1, s2 ∈ [0, 1].

rk-remainder h(s1, s2) := h3

2 ·
(

1
3
(
f ′′
(
x(hs1 + t)

)
·bl
(
f(x(hs1 + t))

)
·bl
(
f(x(hs1 + t))

)
+ f ′

(
x(hs1 + t)

)
·bl
(
f ′(x(hs1 + t)) ·bl (f(x(hs1 + t)))

)
− p

2f
′′(x(t) + hps2f(x(t))

)
·bl
(
f(x(t))

)
·bl
(
f(x(t))

))

A Verified ODE Solver and the Lorenz Attractor 15

Theorem 9 (Runge-Kutta Method with Remainder Term)

φ(x0, h) ∈ rk h(x0) + convex-hull (rk-remainder h([0, 1], [0, 1]))

In order to use this theorem for rigorous numerical computations, we produce
a deep embedding of the expressions for rk h and rk-remainder h. We do so for an
arbitrary ODE f : Rn → Rn with deep embedding [[fe]]xs = f (eucl-of-list x).
Expressions for f ′ and f ′′ are computed symbolically from fe via D1,2

e from the
previous section 3.1.

3.3 Straight Line Programs

The expression for rk-remainder from the previous section 3.2 contains common
subexpressions. This is not desirable because one would need to perform redun-
dant computations. We therefore follow Dorel and Melquiond’s [34] approach and
use straight-line programs with static single assignment instead of plain expressions.

For us, a straight line program is just a list of arithmetic expressions, which is
interpreted according to function slp : aexp list → R list → R list :

slp [] x = x

slp (e :: es) x = slp es ([[e]]x :: x)

The idea is that a straight line program only contains unary or binary operations,
although this is not required by the definition. The result of the operation is put on
top of the evaluation stack. The following example illustrates sharing the term x+ y
in the expression (x+ y)(x+ y):

slp [Add (Var 0)(Var 1),Mult (Var 0)(Var 0)] [x, y] = [(x+ y)(x+ y), x+ y, x, y]

We provide a function slp-of , which eliminates common subexpressions by traversing
an expression bottom-up and saving subexpressions in a map that gives the index of
the subexpression in the resulting straight line program.

At run-time (this is important to be able to use the ODE solver as a stand-
alone tool), in an initialization phase, the ODE solver computes symbolically the
derivatives in the expression for rk h and rk-remainder , does constant propagation
(as derivatives can produce 0 constants, this is beneficial) and then compiles the
resulting expression with slp-of into a straight-line program, which is then used in
the course of approximating the ODE in a series of steps.

3.4 Affine Arithmetic

Up to now, we have kept the discussion on the level of expressions, let us now
motivate affine arithmetic as a concrete approximation scheme.

The most basic data structure to represent sets is closed intervals [a, b] = {x |
a ≤ x ≤ b}, but those suffer from the wrapping effect: rotated boxes cannot be repre-
sented without large overapproximations. Moreover dependencies between variables
are lost, e.g. for an enclosure x ∈ [0, 2], the expression x − x evaluates to [−2, 2] in
interval arithmetic whereas the exact result would be representable as the interval
[0, 0].

16 Fabian Immler

Affine arithmetic [6] improves over interval arithmetic by tracking linear depen-
dencies. An affine form A is a function where only finitely many arguments map to
nonzero values. It is interpreted for a valuation ε : N→ R :

affine ε A := A0 +
∑
i

εiAi

Looking at the interpretation, one often calls the terms εi noise symbols and Ai
generators. The idea is that noise symbols are shared between affine forms and that
they are treated symbolically, as formal parameters: the sum of two affine forms is
given by the pointwise sum of their generators, and multiplication with a constant
factor is also done componentwise.

affine ε (A+B) := (A0 +B0) +
∑
i

εi(Ai +Bi)

affine ε (cA) := cA0 +
∑
i

εi(cAi)

The range of an affine form is the set of all affine evaluations where the noise
symbols range over the closed interval [−1, 1]. For the range of a list of affine forms,
those are evaluated jointly for the same valuation of the noise symbols, reflecting the
intuition that those are shared.

range A := {affine ε A | ∀i. − 1 ≤ εi ≤ 1}
joint-range AS := {map (affine ε) AS | ∀i. − 1 ≤ εi ≤ 1}

As a concrete example, let us examine how affine arithmetic handles the depen-
dency problem in the introductory example x− x for x ∈ [0, 2]. The interval [0, 2] is
represented by the affine form 1 + 1 · ε1. This is the affine form given by the function
X := (λi. if i = 0 ∨ i = 1 then 1 else 0). For this function, range X = [0, 2] holds.
Then, in affine arithmetic, (1 + 1 · ε1) − (1 + 1 · ε1) = 0 + 0 · ε1, which corresponds
to the constant zero function. Therefore range (X −X) = {0}.

In general, with the help of range and joint-range , we can express correctness of
a binary operation like addition e.g., as follows:

[a, b] ∈ joint-range [A,B] =⇒ (a+ b) ∈ range (A+B)

Nonlinear operations like multiplication or division are linearized, adding the
linearization error as a fresh noise symbol. Consider e.g., multiplication:

(affine ε A)∗(affine ε B) = A0B0 +
(∑

i

εi(A0Bi+AiB0)
)

+
(∑
i>0

εiAi
)(∑

i>0

εiBi
)

For a proper valuation with εi ∈ [−1, 1], the last summand on the right can be
bounded by (

∑
i>0 |Ai|)(

∑
i>0 |Bi|). Therefore, if k is fresh in A and B, one can set

affine ε (A ∗B) := A0B0 +
(∑

i

εi(A0Bi +AiB0)
)

+ εk

((∑
i>0

|Ai|
)(∑

i>0

|Bi|
))

and the k-th generator bounds the linearization error such that multiplication of
affine forms is conservative:

[a, b] ∈ joint-range [A,B] =⇒ a ∗ b ∈ range (A ∗B)

A Verified ODE Solver and the Lorenz Attractor 17

Similar to the additional noise symbol for a linearization error, also round-off
errors can be included as additional noise symbols. We provide affine approximations
for the primitive functions listed in figure 4. Expressions (and straight line programs)
involving these functions can then be approximated by recursively keeping track of
the next fresh noise symbols.

During longer computations more and more noise symbols will be added to the
affine form, impairing performance in the long run. The number of noise symbols can
be reduced by summarizing (or condensing) several noise symbols into a new one.
This process discards the correlation mediated by the summarized noise symbols,
so a trade-off needs to be found between precision and efficiency. We consider a list
of affine forms AS and use the notation ASi := map (λA. Ai) AS. We call total
deviation |AS| := map (λA.

∑
i |Ai|) AS the componentwise sum of absolute values.

We summarize all symbols i with |ASi| ≤ r|AS| for a given summarization threshold
r. We found that it is important to perform the above comparison componentwise
and not take (like proposed for other implementations of affine arithmetic [42,6])
the infinity norm on both sides. This is of particular importance when components
differ a lot in magnitude.

Apart from looking at affine forms as a formal sum, the joint-range of a list of
affine forms can also be interpreted geometrically as zonotopes: centrally symmetric,
convex polytopes. A zonotope can be visualized as the Minkowski sum (the set of all
possible sums of elements of two sets X ⊕ Y = {x+ y. x ∈ X ∧ y ∈ Y }) of the line
segments defined by the generators. For example, figure 6 depicts a two-dimensional
zonotope with three generators, [−1, 1]a1 ⊕ [−1, 1]a2 ⊕ [−1, 1]a3. Figure 5 contains
a three-dimensional zonotope with three generators (a parallelotope), namely the
zonotope Z defined as follows.

Z := joint-range

 [1ε1 + 0ε2 + 1ε3,
0ε1 + 2ε2 + 5ε3,
0ε1 + 0ε2 + 20ε3]

4 Computational Geometry

An important step for Tucker’s proof is the reduction to a Poincaré map: intersecting
the flow of the ODE with a plane in the state space. In our algorithms, the flow is
approximated with affine arithmetic expressions, therefore enclosed by zonotopes.

In order to compute where the flow intersects the hyperplane, one needs to com-
pute the intersection of the enclosing zonotope with the hyperplane (see figure 5).

This is an interesting geometric problem and we verified an approximative al-
gorithm due to Girard and Le Guernic [7]. At its core, the algorithm is similar to
convex hull computations. We can build on a nice abstraction to reason about it,
namely Knuth’s theory of counterclockwise (ccw) systems [27]. We needed, however,
to extend Knuth’s theory from discrete to continuous sets of points.

4.1 Girard and Le Guernic’s Algorithm

The complexity for computing the exact intersection of a zonotope with a hyperplane
grows exponentially with the number of generators. An overapproximation of the

18 Fabian Immler

-8
-6

-4
-2

 0
 2

 4
 6

 8

-15-10-5 0 5 10 15

-20
-15
-10
-5
 0
 5

 10
 15
 20

x3

Z ∩ G
Z
G

x1
x2

x3

Fig. 5 Three dimensional zonotope Z and intersection with hyperplane G

zonotope before computing the intersection is possible but can lead to overly coarse
approximations. Therefore Girard and Le Guernic [7] proposed a way to directly
compute overapproximations to the intersection.

The first idea is to overapproximate a given set X tightly from a set D of direc-
tions, which can be chosen arbitrarily. For every direction d ∈ D ⊆ Rn, the infimum
md and supremum Md of the sets {〈x, d〉. x ∈ X} needs to be determined (〈_,_〉
denotes the inner product, also known as the dot product). Geometrically speaking,
md and Md give the position of two hyperplanes with normal vector d. The two
hyperplanes bound X from below and above, respectively. An overapproximation P
is then given by the points between all of these hyperplanes:

X ⊆ P = {x ∈ Rn. ∀d ∈ D. md ≤ 〈x, d〉 ≤Md}

The second observation of Girard and Le Guernic is that when the set X is the
intersection of some set Z with a hyperplane G = {x. 〈x, g〉 = c}, then the computa-
tion of the overapproximation P can be reduced to a two-dimensional problem with
the linear transformation Πg,d : Rn → R2, Πg,d(x) = (〈x, g〉, 〈x, d〉).
Lemma 1 (Reduction to Dimension Two)

{〈x, d〉. x ∈ Z ∩G} = {y. (c, y) ∈ Πg,d(Z)}

This lemma is an easy consequence of the definitions of G and Πg,d. For every
direction d, the theorem allows to reduce the computation of the intersection Z ∩G
on the left-hand side to the intersection of the projected two-dimensional zonotope
Πg,d(Z) with the vertical line Lc = {(x, y). x = c}.

Computing the intersection of a two-dimensional zonotope like the one given in
figure 6 and a vertical line Lc can by done by computing bounds on the intersection of
the vertical line Lc with every edge. This is easy and intuitive. The more challenging
part is to compute the set of edges of a two-dimensional zonotope, which we sketch
in the following.

A Verified ODE Solver and the Lorenz Attractor 19

a1
a2

a3

c0

c5

c4

c3

c2

c1

(c,M)

(c,m)

Lc

x

y

Fig. 6 Corners ci and edges of a zonotope {
∑

i
εi · ai | −1 ≤ εi ≤ 1}, generators a1, a2, a3,

intersecting line Lg

4.2 Computing the Set of Edges.

First of all, one can assume that all generators point upwards. One then starts at the
lowest corner (c0 in figure 6) and appends to it the “rightmost” generator a1 (twice)
to reach c1. One then continues with the “rightmost” of the remaining generators,
a2 and is in the process essentially “wrapping up” the hull of the zonotope.

In order to verify such a process, we need a way to reason about “rightmost”
vectors (a total order). Similar ideas of “wrapping up” a set of points also occur for
convex hull algorithms.

4.3 Knuth’s CCW System

In order to verify geometric algorithms, one needs a formal notion of the geometric
concepts involved. For convex hull algorithms, Knuth [27] has given a small theory
that axiomatizes the notion of orientation of points. The intuition is that for three
points p, q, r in the plane, visiting them in order requires either a counterclockwise
(ccw) turn (written pqr) or clockwise (¬pqr) turn. Knuth observed that already few
of the properties fulfilled by the ccw predicate pqr suffice to define a theory rich
enough to formalize many concepts in computational geometry.

The notion of ccw system is a set of points together with a ccw predicate written
pqr for points p, q, r. The ccw predicate needs to satisfy the following properties,
inspired by the relations satisfied by points in the plane. For all axioms in the follow-
ing, there is the additional implicit assumption that the involved points are pairwise
distinct. For three points, only simple axioms need to be fulfilled:

– Cyclic Symmetry: pqr =⇒ qrp
– Antisymmetry: pqr =⇒ ¬prq
– Nondegeneracy: pqr ∨ prq

Cyclic symmetry and the more interesting case of interiority, which involves four
points, are illustrated in figure 7. Interiority states that if one point t is left of three
lines pq qr rp, then the three other points are oriented in a triangle according to pqr.

20 Fabian Immler

p q

r

(a) Cyclic Symme-
try

t

r p

q

(b) Interiority
t s

p

qr

(c) Transitivity

Fig. 7 ccw axioms: dashed predicates are implied by solid ones.

– Interiority: tpq ∧ tqr ∧ trp =⇒ pqr

The most important tool for reasoning is transitivity, which involves five points
and works if three points p, q, r lie in the half-plane left of the line ts, i.e., tsp∧tsq∧tsr.
Then, fixing t as first element for the ccw relation, we have transitivity in the second
and third element: tpq ∧ tqr =⇒ tpr (see figure 7c).

– Transitivity: tsp ∧ tsq ∧ tsr ∧ tpq ∧ tqr =⇒ tpr

The same intuition also holds for the other side of the half-plane:

– Dual Transitivity:

stp ∧ stq ∧ str ∧ tpq ∧ tqr =⇒ tpr

Knuth shows that under the assumptions of Cyclic Symmetry, Antisymmetry,
and Nondegeracy, Transitivity holds if and only if Dual Transitivity holds. Knuth
requires more than half a page of low level reasoning, but as this reasoning is carried
out abstractly in a small first order theory, sledgehammer (Isabelle’s interface to
various automatic theorem provers) is able to find a proof that consists of just one
single invocation of an automated prover.

4.3.1 Total Order from CCW

As sketched earlier, in order to compute the edges of a zonotope, we need to be able
to select a “rightmost” element of a set of vectors. With the transitivity relation
presented before, we can obtain a total order on vectors which allows us to do just
that: Given a center t and another point s, the orientation predicate tpq can be used
to define a total order on points p, q in the half-plane left of ts, i.e., p < q iff tpq.
From Antisymmetry and Nondegeneracy of the ccw system, we get antisymmetry
and totality for the order <. Transitivity of the order < follows from the axiom
Transitivity of the ccw system and the assumption that all points are in the half-
plane left of ts. This ordering is then used to sort the list of generators such that
they actually “wrap up” the zonotope.

A Verified ODE Solver and the Lorenz Attractor 21

4.3.2 Instantiation for Points in the Plane

Up to now, our reasoning was based abstractly on ccw systems, but of course we also
want to use the results for a concrete ccw predicate. Well known from analytic geom-
etry is the fact that ccw orientation is given by the sign of the following determinant
|pqr|:

|pqr| :=

∣∣∣∣∣∣
px py 1
qx qy 1
rx ry 1

∣∣∣∣∣∣ = px ∗ qy + py ∗ rx + qx ∗ ry−
(rx ∗ qy + ry ∗ px + qx ∗ py)

Points are collinear iff |pqr| = 0. Under the assumption that one works with a
finite set of points where no three points are collinear, the following predicate pqr>
satisfies the axioms of a ccw system.

pqr> := |pqr| > 0

Most axioms can easily be proved using Isabelle/HOL’s rewriting for algebraic
structures. Transitivity is slightly more complicated, but can also be solved auto-
matically after a proper instantiation of Cramer’s rule, which is easily proved auto-
matically:

|tpr| = |tqr||stp|+ |tpq||str|
|stq|

, if |stq| 6= 0

4.3.3 CCW on a Vector Space

Knuth presented his axioms with a finite set of discrete points in mind, in our case we
need to talk about orientation of arbitrary points in a continuous set. We therefore
require consistency of the orientation predicate when vector space operations are
involved.

One obvious requirement is that orientation is invariant under translation (fig-
ure 8a). With translation invariance, we can reduce every ccw triple to a triple with
0 as origin, and from there it is easy to state consistency with respect to scaling:
If at q, there is a ccw turn to r, then every point on the ray from 0 through q will
induce a ccw turn to r (figure 8b). Negative scalars can be treated by requiring that
reflecting one point at the origin inverts the ccw predicate (Reflection). Furthermore,
the addition of vectors q and r, which are both ccw of a line p needs to be ccw of p
as well.

– Translation: (p+ s)(q + s)(r + s)> = pqr>

– Scaling: α > 0 =⇒ 0(α · q)r> = 0qr>
– Reflection: 0(−p)q = 0qp
– Addition: 0pq =⇒ 0pr =⇒ 0p(q + r)

The predicate pqr> simplifies much of the reasoning, because it satisfies the
axioms of a ccw system. It does, however, ignore collinear points and therefore all
the points of the zonotope that lie on its edges. In order to also include those into
the reasoning, we define the slightly relaxed ccw predicate pqr≥, which holds for all
points on the line through pq and for all points on the half-plane left of pq.

pqr≥ := |pqr| ≥ 0

22 Fabian Immler

p q

rp+ s

q + s

r + s

(a) Invariance under translation
0 q

r

(b) Invariance under scaling

Fig. 8 ccw axioms on a vector space.

The situation is as follows: pqr≥ is the actual specification that we care about. But it
does not satisfy the axioms of a ccw system, which makes reasoning very convenient.
We therefore first prove the corresponding properties for the ccw system pqr>. With
a simple argument on continuity, the results about pqr> carry over to pqr≥ and
therefore the whole zonotope.

5 Program and Data Refinement

We use two different approaches to turn abstract formalizations into executable
constructs: In situations where abstract operations directly correspond to concrete,
executable ones, we use light-weight data refinement via the code generator. In more
demanding situations, we employ a dedicated framework for nondeterministic spec-
ifications and stepwise program refinement, namely the Autoref tool.

5.1 Light-Weight Data Refinement

For light-weight data refinement [10] via the code generator, abstract operations
need to be mapped directly to concrete, executable ones. Examples of such abstract
types are affine forms and real numbers.

Consider the type of real numbers R. We call it abstract, because as an uncount-
able set, R is obviously not computable. But one can restrict oneself to working on
a computable subset of the real numbers. In our case, we use software floating point
numbers F = {m · 2e | m, e ∈ Z} for (unbounded) integers m, e ∈ Z. We instruct
the code generator to use an uninterpreted constructor Real-of-Float : F → R to
represent real numbers. Operations on real numbers are then computed by pattern
matching on that constructor and executing the corresponding concrete operation,
e.g., for addition:

(Real-of-Float f) + (Real-of-Float g) = (Real-of-Float (f + g))

Since this implementing equation is proved as a theorem, such a setup does not
change the trusted code base. All one has to ensure is that all abstract operations
that occur in the code can be executed in the concrete representation.

Affine forms are abstractly a subtype of functions N→ R. They are implemented
using a type of association lists (N×R) list that are (reverse) strictly sorted according

A Verified ODE Solver and the Lorenz Attractor 23

to the keys. This sparse representation is useful because the largest index of a non-
zero generator can be directly read off by inspecting only the first element. Adding a
fresh generator can be done by simply prepending the new element. Binary operations
are efficiently and easily implemented by merging the two lists of generators.

5.2 Autoref

We use Lammich’s framework Autoref for (automatic) refinement [29,30] in Isa-
belle/HOL. Autoref allows the user to specify algorithms on an abstract level and
provides tool support for stepwise refinement [1] to concrete, executable implemen-
tations.

In this section we present a setup of Autoref for rigorous numerical algorithms:
We provide abstract specifications for elementary operations of common rigorous
numerical algorithms as well as suitable implementations.

5.2.1 Nondeterministic Specifications

An important insight when verifying algorithms that use rigorous numerical enclo-
sures is the fact that, for correctness, any enclosure of the real quantity suffices. We
model this with appropriate nondeterministic specifications.

Autoref is based on a nondeterminism monad α nres , where programs can either
fail or yield a set of values as result.

datatype α nres = FAIL | RES (α set)

The refinement relation ≤ on nres has FAIL as top element and RES S ≤ RES T
iff S ⊆ T . For deterministic results, we write return x := RES {s}. We write for
specifications spec P := RES {x. P x} the result of all values satisfying the predicate
P .

This allows one to specify correctness, e.g, of a program f whose inputs x satisfy
the precondition P and every possible value y in its nondeterministic result satisfies
the postcondition Q: ∀x. P x =⇒ f x ≤ spec (λy. Q y).

In this setting, we specify a set of operations that are useful in the context of
verifying rigorous numerical algorithms, i.e., algorithms that manipulate enclosures.
These operations are best modeled nondeterministically, because one is often only
interested in some safe result.

Subdivisions are a means to maintain precision, we therefore have the following
abstract specifications for splitting a set (with or without the possibility to perform
overapproximations):

split-spec⊆ X := spec (λ(A,B). X ⊆ A ∪B)
split-spec= X := spec (λ(A,B). X = A ∪B)

The following specifications yield some lower/upper bound on the set, not necessarily
exact:

Inf-spec X := spec (λi. ∀x ∈ X. i ≤ x)
Sup-spec X := spec (λs. ∀x ∈ X. x ≤ s)

24 Fabian Immler

Depending on the concrete representation of sets, one might not be able to decide
certain properties, but only give a positive answer if the precision is sufficient. We
therefore have a specification that may guarantee disjointness.

disjoint-spec X Y := spec (λb. b =⇒ X ∩ Y = ∅)

As seen in the previous section 4, depending on the data structure, one can not (or
does not want to) compute an exact representation for the intersection of sets. These
specifications allow one to overapproximate an intersection, while guaranteeing that
the result does not exceed one of the arguments:

inter-spec 1 X Y := spec (λR. X ∩ Y ⊆ R ∧R ⊆ X)
inter-spec 2 X Y := spec (λR. X ∩ Y ⊆ R ∧R ⊆ Y)

To bridge the gap to concrete numerical computations and the results from sec-
tion 3, we use a specification for overapproximations of evaluating straight line pro-
grams:

approx-slp-spec slp X := spec (λR. ∀x ∈ X. [[slp]]x ∈ R)

5.2.2 Refinement Relations

In Autoref, specifications in the nres monad are transferred to executable constructs
in a structured way. Autoref is centered around a collection of so-called transfer rules.
Transfer rules relate abstract with concrete operations. A transfer rule involves a
transfer relation R :: (γ×α) set , which relates a concrete implementation c :: γ with
an abstract element a :: α and is of the following form.

(c :: γ, a :: α) ∈ R

Transfer rules are used to structurally synthesize concrete algorithms from abstract
ones. Relations and relators (which combine relations) are used to express the rela-
tionship between concrete and abstract types.

br is used to build a relation from an abstraction function a :: γ → α and an
invariant I on the concrete type.

br a I := {(c, a c) | I c}

Natural Relators For the types of functions, products, sets, or data types like lists
and nres , one uses the natural relators A→r B,A×r B, 〈A〉set r , 〈A〉list-rel , 〈A〉nres r
with relations A,B for the argument types.

(f, f ′) ∈ A→r B ⇐⇒ ∀(x, y) ∈ A. (f x, f ′ x) ∈ B
((a, b), (a′, b′)) ∈ A×r B ⇐⇒ (a, a′) ∈ A ∧ (b, b′) ∈ B

(X,X ′) ∈ 〈A〉set r ⇐⇒ (∀x ∈ X. ∃x′ ∈ X ′. (x, x′) ∈ A) ∧
(∀x′ ∈ X ′. ∃x ∈ X. (x, x′) ∈ A)

(xs, xs′) ∈ 〈A〉list-rel ⇐⇒ length xs = length xs′ ∧
(∀i < length xs. (xsi, xs′i) ∈ A)

(RES X,RES X ′) ∈ 〈A〉nres r ⇐⇒ (X,X ′) ∈ 〈A〉set r

A Verified ODE Solver and the Lorenz Attractor 25

Representing Vectors We represent vectors (an arbitrary type α of class Euclidean
space) as lists of real numbers where the length matches the dimension of the Eu-
clidean space.

lv-rel := br eucl-of-list (λxs. len xs = DIM(α))

This way, the concrete algorithm is monomorphic, which has the advantage that it
can be generated once and for all and can therefore be used as a stand-alone tool.

Representing Enclosures We provide several implementations for the sets that can
be used as enclosures. Intervals are represented by pairs of element types (which, in
turn are implemented via some relation A):

〈A〉ivl r := {((a′, b′), [a, b]) | (a′, a) ∈ A ∧ (b′, b) ∈ A}

Zonotopes are represented using the joint range joint-range of affine forms

affine r := br (λA. eucl-of-list (joint-range A)) (λ_. True)

We use a symbolic representation of planes using the data type constructor Sctn
that keeps normal vector n and translation c of a hyperplane. It is interpreted using

plane-of (Sctn n c) := {x | 〈x, n〉 = c}

halfspace (Sctn n c) := {x | 〈x, n〉 ≤ c}

for the hyperplane itself or for the halfspace below the hyperplane, where 〈x, n〉 is
the inner product (also called dot product). 〈A〉sctn r is the natural relator that
allows one to change the representation of the normal vector. With this, we can give
a concrete implementation for hyperplanes and half-spaces.

〈A〉plane r := 〈A〉sctn r ◦ br plane-of (λ_. True)

〈A〉halfspace r := 〈A〉sctn r ◦ br halfspace (λ_. True)

For those relations, plane-of , halfspace , and ∩ are easily implemented with the
identity function or as pair. On the abstract level, they describe useful objects that
are convenient to reason about.

((λx. x), plane-of) ∈ 〈A〉sctn r →r 〈A〉plane r

((λx. x), halfspace) ∈ 〈A〉sctn r →r 〈A〉halfspace r

((λx y. (x, y)),∩) ∈ A→r B →r 〈A,B〉inter r

We will see that in some algorithms, one maintains a collection of enclosures, but
abstractly one likes to see them as just one enclosure. For a relation A : (β×α set) set
that implements single enclosures for sets of type α with some concrete representation
of type β, and a relation S : (σ×β set) set that implements sets of concrete elements
β, we define a relation that represents the union of all those elements as follows:

〈S,A〉Union r : (σ × α set) set

〈S,A〉Union r := S ◦ 〈A〉set r ◦ br (λX.
⋃
x∈X

x)(λ_. True)

26 Fabian Immler

Currently, we use lists to implement the set of concrete representations S, for which
we write 〈A〉Union lr := 〈list-set r , A〉Union r , and operations like union or extract-
ing one element (with the specification split-spec=) can be implemented with the
respective operations on lists/sets:

(λxs ys. return (xs@ys),∪) ∈ 〈A〉Union lr →r 〈A〉Union lr →r 〈A〉Union lr

(λx. return (hdx, tl x), split-spec=) ∈ 〈A〉Union lr →r 〈A×r 〈A〉Union lr 〉nres r

Relations to Guide Heuristics Often, in particular to guide heuristics, an algorithm
needs to carry around information, which does not influence correctness proofs. An
ODE solver for example, modifies its step size, also based on previous values. An
implementation needs to carry this information around, but for verifying the al-
gorithm, this only introduces unnecessary clutter. We therefore introduce a relation
that carries more information (implemented via A) in the implementation, but keeps
the abstract semantics (implemented via B):

〈A,B〉info r := {((a′, b′), b) | ∃a. (a′, a) ∈ A ∧ (b′, b) ∈ B}

Adding information is simply done by using a pair in the implementation side. Se-
mantically, this information is simply discarded (put-info a b := b). Information
can be extracted with get-info , which is semantically just an arbitrary element
(get-info b := spec (λ_. True)). The implementations are straightforward:

(λa b. (a, b), put-info) ∈ A→r B →r 〈A,B〉info r

((λ(a, b).return a), get-info) ∈ 〈A,B〉info r → 〈A〉nres r

An example of its usage is illustrated later on in algorithm 1.

6 Reachability Analysis

Overall, we design an algorithm that computes a Poincaré map with a list of interme-
diate Poincaré sections. The global idea (illustrated in figure 9) is as follows: starting
from a set X0, perform a series of single time discretization steps. If reachable sets
grow above a given threshold, subdivide them (sections 6.3 and 6.4). Stop before
an intermediate (or the final) section would be hit, then resolve the Poincaré map
at that section (section 6.5). For Tucker’s proof, it is important to also track the
matrix of partial derivatives together with the solution. To this end, one can encode
the derivative as a higher-dimensional ODE and use essentially the same algorithms
as before. This instrumentation is presented in section 6.7.

6.1 The Framework

We use the high-level constructors and abstract specifications from the previous
section 5. We remain agnostic about the type of enclosures, for which we assume
a relation encl r and implementations for the abstract operations that are needed
for the reachability analysis algorithms: an approximation scheme for expressions
approx-slp-spec , enclosures from intervals using an implementation encl-of-ivl , lower
and upper bounds with Inf-spec , Sup-spec , intersections with a plane inter-spec 2
(note that the relation fixes the second argument to represent a plane, abstractly
inter-spec 2 is just intersection on sets):

A Verified ODE Solver and the Lorenz Attractor 27

��

����

��

����

��

����

��

����

��

����

���

���� �� ���� �� ���� ��

�

�

I

X0

X

��

����

��

����

��

����

��

����

��

����

���

���� �� ���� �� ���� ��

�

�

Fig. 9 Continuous Reachability and intermediate Poincaré sections

– (approx-slp , approx-slp-spec) ∈ slp r →r encl r →r 〈〈encl r 〉option r 〉nres r
– (λx y. encl-of-ivl x y, λx y. [x, y]) ∈ lv-rel →r lv-rel →r encl r
– (inf-encl , Inf-spec) ∈ encl r →r 〈lv-rel 〉nres r
– (sup-encl ,Sup-spec) ∈ encl r →r 〈lv-rel 〉nres r
– (split-encl , split-spec⊆) ∈ real r →r natrel→r encl r →r 〈encl r ×r encl r 〉nres r
– (inter-encl-plane , inter-spec 2) ∈ encl r →r 〈lv-rel 〉plane r →r 〈encl r 〉nres r

Currently, the only instantiation of this scheme is with affine arithmetic (in this
case we set encl r to affine r). Nevertheless, this structure keeps the formalization
modular and one can imagine to add further instantiations—with e.g., Taylor models
or centered forms—in the future.

6.2 The Specification

Our algorithms are supposed to compute enclosures for solutions of the ODE. We
formalize the enclosure of an evolution from an initial set X to some other set Y with
the ternary predicate y, where X yC Y holds if the evolution flows every point of
X ⊆ Rn to some point in Y ⊆ Rn and does not leave the set C in the meantime. We
call C the flowpipe from X to Y .

Definition 9 (Flows-to Predicate)

X yC Y := ∀x ∈ X. ∃t ≥ 0. φ(x0, t) ∈ Y ∧ (∀0 ≤ s ≤ t. φ(x0, s) ∈ CX)

28 Fabian Immler

Algorithm 1 Single Step
1: function single-step (X) . single-step : Rn set → (Rn set × Rn set)
2: w ← width-spec X . semantically, this is spec (λ_. True)
3: h← get-stepsize X
4: if w ≤ max-width then . global parameter max-width
5: (ε, Y, C)← rk-step X h
6: h′ ← adapt-step-size h ε . spec (λ_. True)
7: return (put-info h′ Y,C)
8: else
9: (Y, Z)← split-spec⊆ X
10: return (put-info h (Y ∪ Z), (Y ∪ Z))

6.3 Single Step

In order to compute enclosures for a single step, one needs to first certify that a
solution exists, which is the case for an initial value x0 and stepsize h if the iteration
given by the Picard iteration from section 2.1.2 has a unique fixed point. This is
the standard approach from Bouissou et al. [4], also described in the setting of Isa-
belle [18]. The idea is that the expression Qh(X) = X0 + [0, h] · f(X), which we can
evaluate using approx-slp-spec , is an overapproximation of the Picard iteration and a
post-fixed point certifies existence and a crude enclosure for solutions up to time h.
This crude enclosure can be used as an overapproximation for the terms x(hs1 +t) in
the Runge-Kutta approximation scheme from section 3.2. The function rk-step im-
plements this and actually evaluates the Runge-Kutta approximation scheme twice:
once for time h and once for the time interval [0, h], because this gives a much better
enclosure for the flowpipe up to time h than the crude overapproximation from the
Picard iteration. We prove the following specification.

Theorem 10 rk-step X h ≤ spec (λ(ε, C, Y). X yC Y)

The returned value ε is an estimate for the approximation error. This is used for an
adaptive step size control. Algorithm 1 shows an example how to use this heuristic
(and another heuristic to split large sets), while (almost trivially, because the addi-
tional operations are either vacuous, the identity or overapproximations) satisfying
the same specification.

Theorem 11 single-step X h ≤ spec (λ(C, Y).X yC Y)

The information on the last (and next) step size is only reflected in the refinement
relation for the implementation of single-step :

(single-step impl , single-step) ∈
〈real r , encl r 〉info r → 〈〈〈real r , encl r 〉info r 〉Union lr , 〈encl r 〉Union lr 〉nres r

But this information does not clutter the verification of single-step or the statement
of theorem 11, which is very convenient.

6.4 Continuous Reachability

Note that single-step returns (from an implementation point of view) a collection
of enclosures, so we need some sort of work-list algorithm to resolve all currently

A Verified ODE Solver and the Lorenz Attractor 29

Algorithm 2 Continuous Reachability Loop
1: function reach-cont (sctns,X0)
2: X ← X0;C ← ∅; I ← ∅
3: while λ(X,C, I). X 6= ∅ do
4: (X1, X2)← split-spec =X
5: (Y1, C1)← single-step X1
6: d← disjoint-spec C1 sctns
7: if d then
8: X ← X2 ∪ Y1
9: C ← C ∪ C1
10: I ← I
11: else
12: X ← X2
13: C ← C
14: I ← I ∪X1
15: return (C, I)

reachable sets. Algorithm 2 does so. It maintains three kinds of sets (see also figure 9):
X is the collection of currently “live” sets. C is the collection of all flowpipes explored
so far. I is the collection of sets where reachability analysis has stopped because of
an intersection with a Poincaré section from sctns. The algorithm takes one element
out of the “work-list” X by splitting the collection of enclosures using split-spec=,
performs a single step, checks for an intersection with one of the Poincaré sections
and updates X,C, and I accordingly.

The loop invariant of reach-cont is roughly the following: Elements from X0 flow
via C to X and I, while avoiding sctns.

X0 yC (X ∪ I) ∧ C ∩ sctns = ∅

The specification of reach-cont follows immediately:

Theorem 12 reach-cont (sctns,X0) ≤ spec (λ(C, I). X0 yC I ∧ C ∩ sctns = ∅)

It is worth noticing that the simplicity of the statement of this correctness theorem is
due to the fact that the work-list and heuristic info is hidden via refinement relations
in the implementation. If this were represented on the specification level (e.g., by
using sets of enclosures paired with their current step size), the specification would
have to be much more cluttered:

(
⋃

(h,x)∈X0

x) yC ((
⋃

(h,x)∈X

x) ∪ (
⋃

I))

Such a specification distracts the user and also automatic proof tools—we are there-
fore happy to hide this in the abstraction.

6.5 Resolve Intersection

Algorithm 2 performs reachability analysis until each enclosure is just about to in-
tersect an hyperplane. We compute the intersection from an enclosure X with a
hyperplane H again in an iteration: continuous reachability steps are repeated as
long as flowpipes intersect the hyperplane. The intersection of the individual flow-
pipes is computed with the geometric algorithm from section 4.

30 Fabian Immler

When the intersection is computed by flowing the reachable set through the
hyperplane step by step, we get a set I consisting of individual intersections Ii. Many
of the sets Ii usually overlap, in order to avoid redundant enclosures, the overlap is
resolved with an overapproximative operation: all of the sets Ii are covered with an
interval, which is repeatedly subdivided and shrinked to a given precision (see also
section 3.6 in [21] for a more detailed discussion).

6.6 Intermediate Poincaré Maps

The overall algorithm repeats the alternation of continuous reachability and reso-
lution of Poincaré sections. When there is a sequence H1, . . . ,Hn of intermediate
Poincaré maps to be computed, it is important to ensure that, while flowing towards
or resolving section Hi, one must not intersect with any of the Hj with j > i. Other-
wise the later computation of the Poincaré map Hj might be incorrect because the
actual first return time was reached before.

6.7 Derivatives

For Tucker’s proof, it is necessary to compute not only the Poincaré map, but also its
derivative. The derivative of the flow can be encoded as a higher dimensional ODE
according to the variational equation (theorem 7).

For an ODE with right hand side f : Rn → Rn, a new ODE of type Rn×Rn∗n with
right hand side (x,W) 7→ (f x,Df |x ·W) is constructed. Here the first component
contains the solution, and the second component its matrix of derivatives.

We first extend the flows-to predicate y to a predicate y′ which also takes
derivatives into account.

Definition 10 (Flows-to Predicate Extended with Derivative)

X y′C Y := ∀(x, d) ∈ X. ∃t ≥ 0. (φ(x0, t),Dφ|(x0,t) ·bl d) ∈ Y ∧
(∀0 ≤ s ≤ t. (φ(x0, s),Dφ|(x0,s) ·bl d) ∈ CX)

With this extended predicate for reachability, we can show that reach-cont ′, i.e.,
reach-cont for the extended ODE satisfies the specification reach-cont ′ sctns X ′0 ≤
(λ(C, Y). X y′C Y).

The Poincaré map, however requires extra care, because we cannot simply in-
tersect the derivative of the flow with the Poincaré section: the derivative of the
Poincaré map is given according to the expression in theorem 8. For a hyperplane
H = {x | 〈x, n〉 = c}, the derivative is given as follows (for x ∈ {x | 〈x, n〉 = c}):

DP |ϕ(t) · d = Dφ|(x,τ(x)) · d−
〈Dφ|(x,τ(x)) · d, n〉
〈f(P (x)), n〉 f(P (x))

We can evaluate this expression using affine arithmetic. But we need to be able
to enclose all quantities that occur on the right hand side, in particular P (x) =
ϕ(x, τ(x)) and Dφ|(x,τ(x)) ·d. But we can enclose those: assume a step in computing an
intersection, i.e., X yC Y . Let us assume for simplicity that (X∪Y)∩H = ∅ and X
and Y are on opposite sides of the hyperplane. Then the intersection of the flowpipe C

A Verified ODE Solver and the Lorenz Attractor 31

with the sectionH encloses the Poincaré map: P (X) = {ϕ(x, τ(x)) | x ∈ X} ⊆ C∩H.
For an extended flow X ′ yC′ Y ′, this means {(φ(x, τ(x)),Dφ|(x,τ(x)) ·bl d) | (x, d) ∈
X ′} ⊆ C ′ ∩ H × Rn∗n. Therefore both P (x) = φ(x, τ(x)) and Dφ|(x,τ(x)) · d are
enclosed by the result of the intersection C ′ ∩ H × Rn∗n for which we can use the
regular intersection algorithm from section 4.

6.8 Correctness Theorem

We call the main algorithm that we outlined in the beginning of this section 6
poincare : It resolves a sequence of intermediate Poincaré maps (together with their
derivative). It is verified to compute guaranteed enclosures for Poincaré maps and
their derivative. The algorithm poincare takes as arguments an initial set X : Rn set ,
and initial matrix of partial derivatives DX : Rn∗n set and a target Poincaré section
Σ : Rn set . It is further parameterized by a list of intermediate Poincaré sections,
but they are irrelevant for the final correctness theorem. We formally verify partial
correctness: If the algorithm returns a result, then this result encloses the Poincaré
map P (x) and its derivative DP |x ·DX for every x ∈ X and DX : Rn∗n set .

Theorem 13 (Correctness of ODE solver with Poincaré maps)

poincare X DX Σ = R =⇒ ∀x ∈ X. (P (x),DP |x ·DX) ∈ R

7 Application to Lorenz Attractor

In this section, we present how the verified algorithm poincare of the previous section
is used to certify Tucker’s computations. We show in particular how we formally
prove the theorems 1 and 2. It helps to recall the roles of the forward invariant set
N , the cone field C and the expansion estimates E in Tucker’s proof, as outlined in
section 1.3.

7.1 The Input Data and its Interpretation

It is not necessary to verify precisely the set N that Tucker used, but coming up with
a forward invariant set is slightly more involved than certifying one. We therefore
use the output of Tucker’s program as a starting point to set up the input for our
ODE solver. Since any other forward invariant with suitable cone field and expansion
estimates would do just, we are free to modify Tucker’s data slightly. The output of
Tucker’s program is available online3 as a file containing 7258 lines. We preprocessed
this file by merging the information of some of the lines and slightly coarsening some
of the numerical bounds. The coarsening accounts for slight differences between
Tucker’s and our approximations.

This results in a list of 400 elements, which we call input-data and will be the
basis for all further interpretations:

3 http://www2.math.uu.se/~warwick/main/rodes/ResultFile

http://www2.math.uu.se/~warwick/main/rodes/ResultFile

32 Fabian Immler

Definition 11 (Input Data) input-data :: result list is a list of 400 elements of
type result .

datatype result = Result (invoke-nf : B)
(angle− : R) (angle+ : R)
(expansion : R) (preexpansion : R)
(gridx− : Z) (gridx+ : Z) (gridy− : Z) (gridy+ : Z)
(retx− : Z) (rety− : Z) (retx+ : Z) (rety+ : Z)

Elements res of type result are interpreted as initial rectangles as follows. The
properties gridx−, gridx+, gridy−, and gridy+ encode a rectangle on the Poincaré
section Σ (recall figure 2), which we denote by N(res). The union of all elements
of input-data represents the upper branch N+ of the forward invariant set N . It is
plotted in figure 10.

Definition 12

N(res) :=[((gridx− res− 1) · 2−8, (gridy− res− 1) · 2−8, 27),
((gridx+ res+ 1) · 2−8, (gridy+ res+ 1) · 2−8, 27)]

N+ :=
⋃

res∈input-data

N(res)

N− := {(−x,−y, z) | (x, y, z) ∈ (N+)}
N := N+ ∪N−

The input data also contains information on the image of an initial rectangle. It
is encoded in retx−, rety−, retx+, rety+: We select the elements within those bounds
with return-of :

return-of res := {res′ ∈ input-data |
gridx− res′ ∈ [retx− res, retx+ res] ∧
gridy− res′ ∈ [rety− res, rety+ res]}

angle− and angle+ define the cone C associated with the rectangle: the conic hull
of the line segment between the boundary vectors.

Definition 13

C res =cone hull (segment
(cos(rad (angle− res), sin(rad (angle− res), 0)
(cos(rad (angle+ res)), sin(rad (angle+ res), 0)))))

There rad x = x·π
180 is the radian of the angle given in degrees, segment x y is the

line segment {(1− u) · a+ u · b | u ∈ [0, 1]}, and cone hull S = {c · x | 0 ≤ c∧ x ∈ S}
the conic hull of a set S.

The elements in input-data also encode a conefield C and expansion estimates
as follows. results-at (x) yields the set of result elements that cover a point x (the
rectangles overlap at the boundary). We need to respect this to ensure that C, E ,
and E−1 are well defined.

A Verified ODE Solver and the Lorenz Attractor 33

Fig. 10 N in gray (N+ the upper and N− = S(N+) the lower branch) and enclosure of
P (N+) in black. This is a subset of the Poincaré section Σ (as in figure 2).

Definition 14

results-at (x) := {res ∈ input-data | x ∈ N(res)}

C(x) :=
⋃

res∈results-at (x)

C(res)

E(x) := min
res∈results-at (x)

expansion (res)

E−1(x) := min
res∈results-at (x)

preexpansion (res)

One last property is invoke-nf , which encodes if the numerical computations need
to be interrupted and the results of the normal form need to be invoked. First, we
define abstractly when this is necessary, namely on the stable manifold of the origin.
That is, the set of all points, which tend to the origin in infinite time. We restrict
our attention to the part of the stable manifold whose trajectories do not intersect
Σ for positive time.

Definition 15

Γ := {x |[0,∞] ⊆ ex-ivl x ∧ (∀t > 0. φ(x, t) /∈ Σ) ∧ (φ(x, t) −→t→∞ (0, 0, 0))}

When invoke-nf is true, the computations will be interrupted once the reachable
sets arrive at the small cube L = [−0.1, 0.1] × [−0.1, 0.1] × [−0.1, 0.1] inside which
the normal form estimates are valid. In our computations, solutions are guaranteed
to enter the cube L through a rectangle T and the tangent vectors are in the cone

34 Fabian Immler

that contains DT :

T := ([−0.1, 0.1], [−0.00015, 0.00015], 0.1)×

 [0.8, 1.7]
[0.0005, 0.002]

0

That is, sets are very slim in the y-direction, and the expanding direction is closely
around the x axis. From Tucker’s analysis ([48, Proposition 3.1]), we devised the
following bounds for the sets E1, E2 (and corresponding cones inDE1, DE2) through
which solutions emanating from T exit the cube L:

E1 := ([−0.12,−0.088], [−0.024, 0.024], [−0.012, 0.13])×

 0
[−0.56, 0.56]
[−0.6,−0.08]

E2 := ([0.088, 0.12], [−0.024, 0.024], [−0.012, 0.13])×

 0
[−0.56, 0.56]

[0.08, 0.6]

When we interrupt computations close to L, we check that the sets entering L do
so within T and continuous computations from E1 ∪ E2. Since we have not verified
Tucker’s normal form theory, we need to trust the following assumption:

Assumption 14 (Normal Form Theory Bounds)

T y′L (E1 ∪ E2)

7.2 Checking the Input Data

In the previous section, we only defined what the input-data encodes. Now we check if
the numerical bounds prescribed by the input-data are actually correct. This involves
three steps: First, we need to find a suitable setup to be able to use the algorithm
poincare , which computes derivatives and not cones. Second, we set up the check
that a single element of the input-data is correct. Third, we check all elements of the
input-data , from which we conclude the formal counterparts of theorems 1 and 2.

7.2.1 Representation of Cones

Concerning the checking of cone conditions, first note that C res is an infinite cone,
i.e., an unbounded set of vectors. In contrast to that, all of our numerical algo-
rithms are tailored towards bounded enclosures. We therefore perform the compu-
tations with the line segment connecting the two tangent vectors with unit length.
matrix-segment x1 y1 x2 y2 e encodes a line segment (parameterized by e) in a matrix
(such that it can be used as matrix initial condition DX of poincare , compare theo-
rem 13). mat-seg-of-deg uses this to define the line segment between the endpoints
of unit vectors with given angles u, v to the x axis. A cone can therefore represented
with the help of mat-seg-of-deg :

A Verified ODE Solver and the Lorenz Attractor 35

Lemma 2 (Matrix Representation of Cone)

C(res) = cone hull

m(1,1)
m(2,1)

0

∣∣∣∣∣∣m ∈ mat-seg-of-deg (angle− res) (angle+ res)

with

matrix-segment x1 y1 x2 y2 e :=

x1 + e · (x2 − x1) 0 0
y1 + e · (y2 − y1) 0 0

0 0 0

mat-seg-of-deg u v :=

matrix-segment (cos (rad u))(sin (rad u))(cos (rad v))(sin (rad v))[0, 1]

7.2.2 Checking a Single Result Element

Algorithm 3 Check Result
1: function check-line-c1 (res)
2: X0 ← N(res)
3: DX0 ← mat-seg-of-deg (angle− res) (angle + res)
4: RES ← poincare X0 DX0 Σ
5:

⋃
i
(Pi ×DPi)← split-along N RES

6: RET ← get-results (retx− res, rety− res) (retx + res, rety + res)
7: return ∀i. ∃ret ∈ RET. returns-within res Xi DXi ret

Algorithm 3 outlines how to check that a single result element res ∈ input-data
represents correct numerical bounds. It works as follows: X0 is the initial rectangle,
DX0 the initial data for the derivatives, which encodes the associated cone with
angles angle− res and angle+ res. Then the ODE solver returns with a union of
return images RES, which are split along the boundaries of the individual rectangles
making upN . This splitting ensures that each individual element (Xi, DXi) resulting
from the splitting is contained in exactly on individual element of N . We write
singleton parts of the result of this splitting Xi, DXi. In RET , there are all elements
of the input-data within which res is specified to return. The final check makes
sure that every part Xi, DXi of the splitting returns within one element ret of the
collection RET . It is defined as follows and precisely formulates that X and DX,
which emanate from a result res and hit the result ret, satisfy the prescribed bounds
on cones and expansion.

returns-within res X DX ret :=
X ⊆ N(ret) ∧
check-cone-bounds (angle− res) (angle+ res) X DX ∧
‖DX‖ ≥ E(res) ∧ ‖DX‖ ≥ E−1(ret)

check-cone-bounds is checked using affine arithmetic: It assumes that ux and uy
are on the line segment encoding a cone according to mat-seg-of-deg , therefore checks
that uz = 0 and ignores the other entries of the argument matrix. It further checks

36 Fabian Immler

that the segment is on the right side (0 < ux) and that the boundary angles L and U
(given in degrees) also represent a cone pointing to the right side. The main purpose
is in the last line, the check that the angle of the vector (ux, uy) with the horizontal
axis is between L and U .

check-cone-bounds L U

x
y
z

 ux vx wx
uy vy wy
uz vz wz

 :=

− 90 < L ∧ L ≤ U ∧ U < 90 ∧
0 < ux ∧ uz = 0 ∧

tan(rad L) ≤ uy
ux
∧
uy
ux
≤ tan(rad U)

Correctness of check-line-c1 states that the set N(res) is mapped into the part
return-of res of the forward invariant set. Vectors in the cone C(res) are mapped by
the derivative DP into the cone field with the prescribed expansion estimates. The
theorem states that the derivative exists and is defined when approaching x within
Σ≤ = {(x, y, z) | z ≤ 27}.

Theorem 15 (Correctness of check-line-c1)

check-line-c1 (res) = return True =⇒
∀x ∈ N(res)− Γ. ∀dx ∈ C(res).returns-to Σ x ∧ P (x) ∈ N(return-of res) ∧

(∃DP. (P has-derivative DP) (at x within Σ≤)
(‖DP (dx)‖ ≥ E(res) · ‖dx‖) ∧
(∃ret ∈ return-of res.
P (x) ∈ N(ret) ∧DP (dx) ∈ C(ret) ∧ ‖DP (dx)‖ ≥ E−1(ret) · ‖dx‖))

The theorem follows rather directly from the definition of algorithm 3 and the spec-
ifications and definitions of the occurring functions.

7.2.3 Checking All Results

We have indeed the theorem that all input-data is correct:

Theorem 16 (Global Numerical Results)

∀res ∈ input-data . check-line-c1 res = return True

We prove formally that under the assumption 14, theorem 16 implies theorem 1
and 2, which is the main result of this article. It follows from combining the individual
instances of theorem 15 in a suitable way.

Theorem 16 is proved by computing check-line-c1 (res) for every res ∈ input-data .
The computations are carried out using by evaluating the statement

Parallel.forall (λres. check-line-c1 res) input-data

with Isabelle/HOL’s evaluation engine eval. Parallel.forall results in parallel process-
ing of the 400 individual elements of input-data . Further parallelism is introduced
when enclosures are split during reachability analysis. Split sets can be processed in

A Verified ODE Solver and the Lorenz Attractor 37

parallel until they reach the next (intermediate) Poincaré section, where they might
be (partially merged) upon resolving the intersection (section 6.5).

Figure 11 shows the plot of an enclosure for the Lorenz attractor resulting from
the verified computation. The plot hints at the intermediate Poincaré sections that
were manually set up (for some initial rectangles) at about z = 27, z = 30, x =
±5,x = ±1.5,x = ±1, x = ±0.75, x = ±0.1, and z = 0.1. The black part of figure 10
is an enclosure for P (N+) resulting from these computations, and it is as expected
and verified contained in N .

The timing results of a computation on a machine with 22 cores 4 are given
below:

– Threads: 22
– Elapsed Time: 6h 33min 9s
– CPU Time: 131h 52min 40 s
– Parallelization Factor: 20.13
– Garbage Collection Time: 42min 36s

To compare this with Tucker’s C++ program, I compiled Tucker’s program in
a Virtual Machine running Ubuntu 4.20 and gcc version 3.3.4 on a machine with a
2,6 GHz Intel R© CoreTM i7 CPU and 16 GB RAM. Tucker’s program finished after
a total CPU time of 30h and 24min. The algorithms and data structures are very
different, so a direct comparison is hard. But with regard to the total CPU time (131
h) of our algorithm, a factor of less than five compared to a C++ program signifies
reasonable performance for a verified algorithm.

In earlier developments [20], an enclosure for the Lorenz attractor was computed
with neither derivative nor cones. This earlier version verified an enclosure for the
Lorenz attractor in about 7000 CPU hours. With the present version algorithms, such
a computation (without derivatives and cones) can be performed in about 3 CPU
hours. The speedup compared to the earlier work is mostly due to less aggressive
splitting of reachable sets, and a smaller number of intermediate Poincaré sections: In
the earlier work [20], intermediate Poincaré sections were introduced heuristically on-
the-fly, and in the present work only where they are really effective. This is beneficial,
because resolving the intersection incurs overapproximations.

8 Conclusion

This article presented an overview of the diversity of algorithms, abstract results
and techniques for the formal verification of a general-purpose ODE solver and its
application to the rigorous numerical part of Tucker’s proof.

8.1 Future Work

Future work would be to lift the assumption 14 on the normal form theory to for-
mal foundations. This involves in particular multivariate formal power series and
a number of analytic estimations, proving existence and convergence of specifically
constructed formal power series. This involves more than 24 pages of Tucker’s article

4 Intel R©Xeon R©CPU E5-2699 v4 @ 2.20GHz

38 Fabian Immler

Fig. 11 Enclosure of φ{(x, [0; τ(x)]) | x ∈ N+}, during the computation of P (N+).

and is therefore a larger formalization effort. It also includes computer assisted parts:
smalldiv.cc and coeffs.cc help devising the normal form, but neither their spec-
ification nor their implementation is particularly challenging; they essentially only
evaluate a large number of fixed arithmetic expressions.

A Verified ODE Solver and the Lorenz Attractor 39

sec. language lines of code/proof

RODES C++ 3800
Profil/BIAS C++ 8852
generated ODE solver SML 13200
Flow, Poincaré map 2 Isabelle/HOL theory 12000 - 16500
Affine Arithmetic 3 8500
Intersection 4 5000
Refinement/Enclosures 3 5000
Reachability Analysis 6 10000
Lorenz Attractor 7 3000

Table 1 Size of Code and Formalization

Another direction for future work would be to formally conclude from the numer-
ical results that the Lorenz equations support a robust singular hyperbolic attractor.
One part would be to prove (similar to Tucker’s expansion.cc) that the expansion
estimates given by E are sufficiently large to guarantee the locally eventually onto
property. We validated this with a non-verified computation for the expansion esti-
mates prescribed by our input-data . Further mathematical foundations are required
in order to conclude from the computed forward invariant conefield C and the ex-
pansion bounds that there exists a stable foliation, and that this foliation can be
used to reduce the two-dimensional dynamics on Σ to a one-dimensional map. This
requires in particular the formalization of differentiable manifolds, and theorems like
the existence of differentiable invariant sections for fiber contractions [41].

8.2 Size of Code

Table 1 shows some statistics on the size in terms of lines of code of several programs
related to this verification. RODES is the rigorous ODE solver used by Tucker, it
consists of 3800 lines of C++ code and builds on a library for interval arithmetic
(Profil/BIAS) of about twice the size. Similar to the sum of those two is the size of
the generated SML code. The verification required more effort, but the largest part
is generic: the part specific to the Lorenz attractor makes up less than 10% of the
total number of lines of code.

8.3 Trust Base

We use the evaluation oracle eval in Isabelle/HOL. This is common practice to speed
up rewriting. Isabelle/HOL equations are mapped to function definitions in Stan-
dard ML. These are compiled and evaluated in PolyML5. We also use the common
extension (HOL-Library.Code_Target_Numeral in Isabelle2017) of the code gener-
ator that maps Isabelle/HOL integers to the integer type IntInf.int of PolyML,
which can be based on either PolyML’s own implementation of arbitrary precision
integers or GMP [8].

This setup means that the trusted code base is increased: The translation of
Isabelle/HOL terms to SML code is not verified. One needs to trust PolyML and its

5 http://polyml.org/

http://polyml.org/

40 Fabian Immler

compiler, but PolyML is Isabelle’s implementation language and therefore anyhow
part of the trusted code base.

Reducing the trusted code base is an orthogonal issue: there is ongoing work [16,
17] for verified code generation to CakeML [28], a verified implementation of ML.

Isabelle/HOL’s eval speeds up evaluation by translating terms to the implemen-
tation language of the proof checker (PolyML). In view of this, it is more similar to
Coq’s native_compute [2], which evaluates terms after translation to Coq’s imple-
mentation language OCaml, than to Coq’s virtual machine [9].

8.4 Related Work

Integrals and Differential Equations in Proof Assistants. Spitters and Makarov [33]
implement Picard iteration to calculate solutions of ODEs in the interactive theorem
prover Coq, but restricted to relatively short existence intervals. Boldo et al. [3]
approximate the solution of one particular partial differential equation with a C-
program and verify its correctness in Coq. Mahboubi and Sibut-Pinote [32] compute
rigorous approximations of integrals with Taylor models.

Rigorous Numerics in Proof Assistants. Rigorous numerical approximation of arith-
metic expressions has been done in Coq [34] for different types of enclosures (Taylor
models, intervals, centered forms). Muñoz and Lester [37] use rational interval arith-
metic in PVS. Rigorous numerics with first order interval approximations has been
implemented by Solovyev for the Flyspeck project [44] in HOL Light. This work
is remarkable in that it is not relying on code generation but uses only primitive
inference rules of HOL Light’s kernel.

Computational Geometry. Pichardie and Bertot [40] were the first to formalize the
ccw system and verify a functional convex hull algorithm in Coq. Meikle and Fleu-
riot [35] formalized an imperative algorithm and verified it using Hoare logic in
Isabelle/HOL. Brun et al. [5] verify an algorithm based on hypermaps to compute
the convex hull.

Acknowledgments.

I would like to thank Jeremy Avigad for drawing my attention to this particular appli-
cation of rigorous ODE solving. I am very grateful to Tobias Nipkow for encouraging
and supporting me to pursue this multi-faceted project. The anonymous reviewers
provided helpful and constructive feedback. This research was financially supported
by DFG RTG 1480 (PUMA) and DFG Koselleck grant NI 491/16-1. I would like
to thank Johannes Hölzl for supervising my student project on the Picard-Lindelöf
theorem. I thankfully acknowledge Christoph Traut’s work for his student project
on formalizing the variational equation.

A Verified ODE Solver and the Lorenz Attractor 41

References

1. Back, R.J., Wright, J.: Refinement calculus: a systematic introduction. Springer Science
& Business Media (2012)

2. Boespflug, M., Dénès, M., Grégoire, B.: Full reduction at full throttle. In: International
Conference on Certified Programs and Proofs, pp. 362–377. Springer (2011)

3. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Wave equation
numerical resolution: A comprehensive mechanized proof of a C program. Journal of
Automated Reasoning 50(4), 423–456 (2013). DOI 10.1007/s10817-012-9255-4

4. Bouissou, O., Chapoutot, A., Djoudi, A.: Enclosing temporal evolution of dynamical
systems using numerical methods. In: G. Brat, N. Rungta, A. Venet (eds.) NASA
Formal Methods, LNCS, vol. 7871, pp. 108–123. Springer (2013). DOI 10.1007/
978-3-642-38088-4_8

5. Brun, C., Dufourd, J.F., Magaud, N.: Designing and proving correct a convex hull algo-
rithm with hypermaps in Coq. Computational Geometry 45(8), 436 – 457 (2012). DOI
http://dx.doi.org/10.1016/j.comgeo.2010.06.006. Geometric Constraints and Reasoning

6. de Figueiredo, L.H., Stolfi, J.: Affine arithmetic: Concepts and applications. Numerical
Algorithms 37(1-4), 147–158 (2004)

7. Girard, A., Le Guernic, C.: Zonotope/hyperplane intersection for hybrid systems reachabil-
ity analysis. In: M. Egerstedt, B. Mishra (eds.) Hybrid Systems: Computation and Control,
LNCS, vol. 4981, pp. 215–228. Springer (2008). DOI 10.1007/978-3-540-78929-1_16

8. Granlund, T., et al.: GNU MP 6.0 Multiple Precision Arithmetic Library. Samurai Media
Limited (2015)

9. Grégoire, B., Leroy, X.: A compiled implementation of strong reduction. ACM SIGPLAN
Notices 37(9), 235–246 (2002)

10. Haftmann, F., Krauss, A., Kunčar, O., Nipkow, T.: Data refinement in Isabelle/HOL.
In: S. Blazy, C. Paulin-Mohring, D. Pichardie (eds.) Interactive Theorem Proving: 4th
International Conference, ITP 2013, Rennes, France, July 22-26, 2013. Proceedings, pp.
100–115. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

11. Haftmann, F., Wenzel, M.: Constructive type classes in Isabelle. In: International Work-
shop on Types for Proofs and Programs, pp. 160–174. Springer (2006)

12. Harrison, J.: A HOL theory of Euclidean space. In: J. Hurd, T. Melham (eds.) Theorem
Proving in Higher Order Logics, 18th International Conference, TPHOLs 2005, Lecture
Notes in Computer Science, vol. 3603, pp. 114–129 (2005)

13. Hölzl, J.: Proving inequalities over reals with computation in Isabelle/HOL. In: G.D. Reis,
L. Théry (eds.) Programming Languages for Mechanized Mathematics Systems (ACM
SIGSAM PLMMS’09), pp. 38–45 (2009)

14. Hölzl, J., Immler, F., Huffman, B.: Type classes and filters for mathematical analysis
in Isabelle/HOL. In: S. Blazy, C. Paulin-Mohring, D. Pichardie (eds.) Interactive Theo-
rem Proving: 4th International Conference, ITP 2013, Rennes, France, July 22-26, 2013.
Proceedings, pp. 279–294. Springer Berlin Heidelberg, Berlin, Heidelberg (2013). URL
https://doi.org/10.1007/978-3-642-39634-2_21

15. Huffman, B., Kunčar, O.: Lifting and transfer: A modular design for quotients in Isa-
belle/HOL. In: International Conference on Certified Programs and Proofs, pp. 131–146.
Springer (2013)

16. Hupel, L.: Dictionary construction. Archive of Formal Proofs (2017). http://isa-afp.
org/entries/Dict_Construction.html, Formal proof development

17. Hupel, L., Nipkow, T.: A verified compiler from Isabelle/HOL to CakeML Draft
18. Immler, F.: Formally verified computation of enclosures of solutions of ordinary differential

equations. In: J.M. Badger, K.Y. Rozier (eds.) NASA Formal Methods: 6th International
Symposium, NFM 2014, Houston, TX, USA, April 29 – May 1, 2014. Proceedings, pp.
113–127. Springer International Publishing, Cham (2014). URL https://doi.org/10.
1007/978-3-319-06200-6_9

19. Immler, F.: A verified algorithm for geometric zonotope/hyperplane intersection. In: Pro-
ceedings of the 2015 Conference on Certified Programs and Proofs, CPP ’15, pp. 129–136.
ACM, New York, NY, USA (2015). URL http://doi.acm.org/10.1145/2676724.2693164

20. Immler, F.: A verified enclosure for the Lorenz attractor (rough diamond). In: C. Urban,
X. Zhang (eds.) Interactive Theorem Proving: 6th International Conference, ITP 2015,
Nanjing, China, August 24-27, 2015, Proceedings, pp. 221–226. Springer International
Publishing, Cham (2015). URL https://doi.org/10.1007/978-3-319-22102-1_14

https://doi.org/10.1007/978-3-642-39634-2_21
http://isa-afp.org/entries/Dict_Construction.html
http://isa-afp.org/entries/Dict_Construction.html
https://doi.org/10.1007/978-3-319-06200-6_9
https://doi.org/10.1007/978-3-319-06200-6_9
http://doi.acm.org/10.1145/2676724.2693164
https://doi.org/10.1007/978-3-319-22102-1_14

42 Fabian Immler

21. Immler, F.: Verified reachability analysis of continuous systems. In: C. Baier, C. Tinelli
(eds.) Tools and Algorithms for the Construction and Analysis of Systems: 21st Inter-
national Conference, TACAS 2015, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015,
Proceedings, pp. 37–51. Springer Berlin Heidelberg, Berlin, Heidelberg (2015). URL
https://doi.org/10.1007/978-3-662-46681-0_3

22. Immler, F.: Affine arithmetic. Archive of Formal Proofs (2017). http://isa-afp.org/
entries/Affine_Arithmetic.shtml, Formal proof development

23. Immler, F., Hölzl, J.: Numerical analysis of ordinary differential equations in Isabelle/HOL.
In: L. Beringer, A. Felty (eds.) Interactive Theorem Proving: Third International Con-
ference, ITP 2012, Princeton, NJ, USA, August 13-15, 2012. Proceedings, pp. 377–392.
Springer Berlin Heidelberg, Berlin, Heidelberg (2012). URL https://doi.org/10.1007/
978-3-642-32347-8_26

24. Immler, F., Hölzl, J.: Ordinary differential equations. Archive of Formal Proofs (2017).
http://isa-afp.org/entries/Ordinary_Differential_Equations.shtml, Formal proof
development

25. Immler, F., Traut, C.: The flow of ODEs: Formalization of variational equation and
Poincaré map. Accepted for Publication in Journal of Automated Reasoning

26. Immler, F., Traut, C.: The flow of ODEs. In: J.C. Blanchette, S. Merz (eds.) Interactive
Theorem Proving: 7th International Conference, ITP 2016, Nancy, France, August 22-25,
2016, Proceedings, pp. 184–199. Springer International Publishing, Cham (2016). URL
https://doi.org/10.1007/978-3-319-43144-4_12

27. Knuth, D.: Axioms and Hulls. Springer, Berlin New York (1992). Number 606 in Lecture
Notes in Computer Science

28. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implementation of
ML. In: ACM SIGPLAN Notices, vol. 49, pp. 179–191. ACM (2014)

29. Lammich, P.: Refinement for monadic programs. Archive of Formal Proofs (2012). http:
//afp.sf.net/entries/Refine_Monadic.shtml, Formal proof development

30. Lammich, P.: Automatic data refinement. In: International Conference on Interactive
Theorem Proving, pp. 84–99. Springer (2013)

31. Lorenz, E.N.: Deterministic nonperiodic flow. Journal of the Atmospheric Sciences 20(2),
130–141 (1963). DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

32. Mahboubi, A., Melquiond, G., Sibut-Pinote, T.: Formally verified approximations of def-
inite integrals. In: J.C. Blanchette, S. Merz (eds.) Interactive Theorem Proving: 7th In-
ternational Conference, ITP 2016, Nancy, France, August 22-25, 2016, Proceedings, pp.
274–289. Springer International Publishing, Cham (2016)

33. Makarov, E., Spitters, B.: The Picard algorithm for ordinary differential equations in Coq.
In: S. Blazy, C. Paulin-Mohring, D. Pichardie (eds.) Interactive Theorem Proving, LNCS,
vol. 7998, pp. 463–468. Springer Berlin Heidelberg (2013)

34. Martin-Dorel, E., Melquiond, G.: Proving tight bounds on univariate expressions with
elementary functions in Coq. J. Autom. Reason. 57(3), 187–217 (2016). DOI 10.1007/
s10817-015-9350-4

35. Meikle, L.I., Fleuriot, J.D.: Mechanical theorem proving in computational geometry. In:
H. Hong, D. Wang (eds.) Automated Deduction in Geometry, Lecture Notes in Computer
Science, vol. 3763, pp. 1–18. Springer Berlin Heidelberg (2006). DOI 10.1007/11615798_1

36. Morales, C., Pacifico, M., Pujals, E.: Singular hyperbolic systems. Proceedings of the
American Mathematical Society 127(11), 3393–3401 (1999)

37. Muñoz, C., Lester, D.: Real number calculations and theorem proving. In: J. Hurd, T. Mel-
ham (eds.) Theorem Proving in Higher Order Logics (TPHOLs 2005), LNCS, vol. 3603,
pp. 195–210 (2005)

38. Nipkow, T.: Order-sorted polymorphism in Isabelle. Logical environments pp. 164–188
(1993)

39. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A proof assistant for higher-order
logic. LNCS. Springer (2002)

40. Pichardie, D., Bertot, Y.: Formalizing convex hull algorithms. In: R. Boulton, P. Jackson
(eds.) Theorem Proving in Higher Order Logics, Lecture Notes in Computer Science, vol.
2152, pp. 346–361. Springer Berlin Heidelberg (2001). DOI 10.1007/3-540-44755-5_24

41. Robinson, C.: Dynamical Systems - Stability, Symbolic Dynamics, and Chaos. CRC Press
(1999). DOI 10.1007/978-1-4613-0003-8

42. Rump, S.M., Kashiwagi, M.: Implementation and improvements of affine arithmetic. Non-
linear Theory and Its Applications, IEICE 6(3), 341–359 (2015). DOI 10.1587/nolta.6.341

https://doi.org/10.1007/978-3-662-46681-0_3
http://isa-afp.org/entries/Affine_Arithmetic.shtml
http://isa-afp.org/entries/Affine_Arithmetic.shtml
https://doi.org/10.1007/978-3-642-32347-8_26
https://doi.org/10.1007/978-3-642-32347-8_26
http://isa-afp.org/entries/Ordinary_Differential_Equations.shtml
https://doi.org/10.1007/978-3-319-43144-4_12
http://afp.sf.net/entries/Refine_Monadic.shtml
http://afp.sf.net/entries/Refine_Monadic.shtml

A Verified ODE Solver and the Lorenz Attractor 43

43. Smale, S.: Mathematical problems for the next century. The Mathematical Intelligencer
20(2), 7–15 (1998). DOI 10.1007/BF03025291

44. Solovyev, A., Hales, T.C.: Formal verification of nonlinear inequalities with taylor interval
approximations. In: NASA Formal Methods Symposium, pp. 383–397. Springer (2013)

45. Sparrow, C.: The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. No. 41
in Applied Mathematical Sciences. Springer (1982). DOI 10.1007/978-1-4612-5767-7

46. Tucker, W.: My thesis: The Lorenz attractor exists (1998). http://www2.math.uu.se/
~warwick/main/pre_thesis.html

47. Tucker, W.: The Lorenz attractor exists. Comptes Rendus de l’Académie des Sciences-
Series I-Mathematics 328(12), 1197–1202 (1999)

48. Tucker, W.: A rigorous ODE solver and Smale’s 14th problem. Foundations of Computa-
tional Mathematics 2(1), 53–117 (2002)

49. Viana, M.: What’s new on Lorenz strange attractors? The Mathematical Intelligencer
22(3), 6–19 (2000)

http://www2.math.uu.se/~warwick/main/pre_thesis.html
http://www2.math.uu.se/~warwick/main/pre_thesis.html

	Introduction
	Mathematics
	Rigorous Numerics
	Computational Geometry
	Program and Data Refinement
	Reachability Analysis
	Application to Lorenz Attractor
	Conclusion

