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Abstract11

We present a novel approach to combine the HOL4 and Isabelle theorem provers: both are imple-12

mented in SML and based on distinctive variants of HOL. The design of HOL4 allows to replace13

its inference kernel modules, and the system infrastructure of Isabelle allows to embed other ap-14

plications of SML. That is the starting point to provide a virtual instance of HOL4 in the same15

run-time environment as Isabelle. Moreover, with an implementation of a virtual HOL4 kernel that16

operates on Isabelle/HOL terms and theorems, we can load substantial HOL4 libraries to make17

them Isabelle theories, but still disconnected from existing Isabelle content. Finally, we introduce a18

methodology based on the transfer package of Isabelle to connect the imported HOL4 material to19

that of Isabelle/HOL.20
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1 Introduction: Interoperability of Theorem Provers37

Suppose you chose Isabelle/HOL as your favorite theorem prover, like many other people38

did, e.g., in the Isabelle Archive of Formal Proofs (AFP) [3]. Unfortunately, by committing39

to one prover, you miss out on all of the great developments in others. For example, you40

cannot re-use the substantial work on the CakeML compiler [12], which is done in HOL4.41

Interoperability between theorem provers, particularly HOL-based systems, has a long42

history (see also Section 7). But the problem has not been solved satisfactorily so far: none43

of the previous approaches has managed to import a huge project like CakeML in a scalable44

way and such that the result can be reused in a truly idiomatic manner in the target system.45
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2 Virtualization of HOL4 in Isabelle

Here we propose a novel and unorthodox approach to combine Isabelle/HOL and HOL4.46

Main Ideas.47

We observe that HOL4 is designed with a modular and replaceable kernel, and that both48

provers are implemented in SML; Isabelle turns the underlying platform into a sophisticated49

environment of managed Isabelle/ML. The main ideas are:50

Run HOL4 inside the run-time environment of Isabelle/ML.51

Replace the kernel of HOL4 by a kernel that acts as a proxy to the kernel of Isabelle/HOL.52

Keep imported HOL4 libraries unchanged, without connections to existing Isabelle/HOL53

libraries at first.54

Connect theory content via Isabelle’s transfer package.55

Challenges: HOL4 versus Isabelle/HOL.56

We briefly review aspects of HOL4 and Isabelle that are relevant for combining them in57

a single run-time environment. Isabelle/Pure [17] is a generic logical framework (minimal58

higher-order logic), and Isabelle/HOL [15] a big library of Isabelle (classical higher-order59

logic with many add-on tools). HOL4 [19] is a proof assistant specifically for classical higher60

order logic. Both Isabelle and HOL4 are implemented in SML and run atop Poly/ML [14].61

HOL4 provides a small abstract interface to its logical kernel (the modules for types, terms,62

and theorems); this opens the possibility to choose between different kernels implementations.63

Isabelle’s inference kernel provides abstract types and constructors similar to the ones required64

by the kernel interface of HOL4.65

The general idea of our approach seems straightforward: We replace the kernel of one66

HOL-based system with the kernel of another HOL-based system. But the implementation67

is not trivial, there are both conceptual and engineering difficulties to master.68

The conceptual difficulty concerns differences in how HOL4 and Isabelle maintain logical69

declarations (i.e. update signatures of theories): HOL4 keeps a table of declared types and70

constants in a global mutable state variable that changes linearly over time. In contrast,71

Isabelle operates on a universal context as a purely functional value, following the DAG-72

structure of theories and the block-structure of proofs. We address this by providing an ML73

environment in which global state is virtualized inside Isabelle’s universal context.74

The engineering difficulty concerns details about the mapping of HOL4 inferences to75

Isabelle/HOL: they must conform precisely to the behavior expected from the HOL4 kernel76

interface. There are some further side-conditions, like implicit state in HOL4 terms, and77

different policies for names of variables and constants.78

Contributions and Findings.79

We provide a working implementation of a virtual ML environment for HOL4 (Section 2),80

that is well integrated in Isabelle’s Prover IDE (Isabelle/jEdit) and manages global state81

implicitly (Section 3). We present the implementation of a kernel for the virtual HOL4 that82

acts as a proxy to Isabelle/HOL theories, theorems, terms, and types (Section 4). We further83

propose a methodology (Section 5) to connect the imported HOL4 formalization to existing84

libraries in Isabelle/HOL and illustrate this idea on a small example.85

Our measurements (Section 4.3) indicate that this approach of combining the two provers86

is worth continuing towards big applications: The performance losses in virtualized HOL487

and the proxy to Isabelle inferences are quite small, with a constant slowdown on most of88

the basis library of HOL4.89
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2 Virtualization in Isabelle/ML and ML Environments90

Isabelle/ML is based on Poly/ML, but it isolates programs from low-level access to the91

compiler and run-time system: instead of direct mutation of the toplevel environment, there92

are functional updates on a universal context [21, §1.1]: it contains all logical declarations,93

add-on data for proof tools, and the ML environment (ML types, values, signatures, structures,94

functors, infixes). This managed environment of Isabelle/ML imposes restrictions on user-95

space programs, but allows pervasive parallelism with live editing of a running program in96

the Prover IDE, including implicit “undo” of ML toplevel declarations.97

Such virtualization of ML is possible thanks to special operations provided by Poly/ML,98

most notably PolyML.compiler: it augments the running program with new declarations99

in the static ML environment, and new evaluations on the run-time heap (using native100

machine-code). This has been integrated with the universal context management of Isabelle101

for theories and proofs. Isabelle commands like ML or ML_file augment the environment102

according to the structure of theory documents in a thread-safe manner, i.e. ML code within103

independent theories (according to their DAG structure) and proofs (according to their block104

structure) can run in parallel without conflicts.105

We have added a further dimension of named ML environments, to support other ML106

applications within Isabelle (notably HOL4): the ML function ML_Env.setup takes a fresh107

name and some operations to turn source text into ML tokens and (optional) antiquotations.108

There are two predefined ML environments: Isabelle refers to regular Isabelle/ML in the109

context of Isabelle/Pure (with some token syntax extensions and antiquotations), and SML110

refers to official Standard ML starting from the initial basis (without syntax add-ons).111

The meaning of Isabelle commands like ML_file has been modified to depend on the112

context option ML_environment: it specifies the names of input and output environments in113

the form “env1>env2” (where “env>env” may be abbreviated by “env” alone). This allows114

to build up ML modules in independent name spaces, and to move material between them on115

demand. For example, the Isabelle/ML operation writeln for managed output of messages116

(with optional Prover IDE markup) can be made accessible in plain SML like this:1117

declare [[ML_environment = "Isabelle>SML"]]118

ML "val println = writeln"119

That covers the static phase of ML declarations, but there is also the dynamic phase for120

program evaluation. To fit this into the purely functional context model of Isabelle, each121

ML execution context has a private (thread-local) variable to access its Isabelle context.122

The system provides the initial value, which may be changed by the running program via123

Context.>> of type (context -> context) -> unit. Afterwards, the system takes back124

the result. Thus old-style ML toplevel scripts with implicit mutation become plain functions125

on the context. Here is an example for Isabelle/ML:126

fun declare_const name ty =127

Context.>> (Context.map_theory (Sign.add_consts [(Binding.name name, ty, NoSyn)]));128

declare_const "c" propT;129

declare_const "d" (propT --> propT);130

As the effect of updating the context by Context.>> is managed by Isabelle, going back131

to an earlier situation in the theory means that the updates are still absent. So we get a132

form of implicit “undo”, simply by returning to an old version of the (immutable) context.133

1 TextIO.print is available in the SML environment, too, but its output shows up on stdout and is not
easily accessible to end-users in the Prover IDE. It is also not possible to “undo” such physical output.
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3 ML Environment for HOL4134

We use ML_Env.setup from Section 2 to define a fresh ML environment with the name135

“HOL4”, hereafter referred to as the HOL4-environment.136

I Definition 1 (HOL4-environment). The named ML environment “HOL4” in Isabelle.137

Subsequently we describe our setup of the HOL4-environment. Its initial basis is augmented to138

turn ref cells into variables managed in the Isabelle context (Section 3.1 and 3.2). Moreover,139

the lexical syntax is changed to support HOL4 quotations of terms and types (Section 3.3).140

3.1 Global State141

SML provides a special type ’a ref for mutable reference cells pointing to values of type142

’a. (There is also the Array structure, for vectors of ref cells, but that is unused in143

HOL4.) The main operations on ’a ref are ref: ’a -> ’a ref to initialize a new cell,144

! : ’a ref -> ’a to get the cell’s content, and infix := : ’a ref * ’a -> unit to change145

the cell’s content. We imitate that in our structure Context_Var: it provides type ’a var146

and operations new, get, put with analogous signatures. It is implemented via a data slot in147

the Isabelle context [21, §1.1.4], holding a map from integers to the universal sum type in148

SML. The operation new: ’a -> ’a var allocates a new index in the table and provides149

type-safe injections and projections for stored values of the particular type ’a.150

Now the meaning of HOL4 programs shall be changed to refer to this managed variable151

space, whenever ’a ref operations are seen, but this type cannot be redefined in SML user-152

space. Since we manage the ML environment anyway, we simply map the name “ref” for153

types and values to our counterparts Context_Var.var and Context_Var.new, respectively.154

The other operations can be redefined by conventional declarations in SML.155

A remaining problem is the use of ref as a datatype constructor in pattern matching,156

instead of ! as selector. To keep our language manipulation simple, we eliminated the (rare)157

uses of that feature of SML in the HOL4 repository: there was no problem with rewriting,158

e.g., fun lookup (ref v) = v manually to fun lookup r = !r.159

In summary, the module Context_Var manages the overall state of all context variables160

of the running ML program: henceforth it can represent the global “mutable” application161

state within the HOL4-environment.162

I Definition 2 (HOL4-state). The value of the table in Context_Var in a given universal163

context is called the HOL4-state.164

3.2 Local State165

The above approach, which maps all uses of ref to Context_Var, is functionally correct,166

but there is a catch regarding performance and memory consumption. Conventional ref167

cells are subject to garbage collection in ML, and do not need an explicit operation to free168

allocated memory. In contrast, variables that were allocated once via Context_Var.new169

remain accessible in the context and will not be garbage-collected automatically.170

This is particularly problematic for strictly local program variables, i.e., reference cells171

that are private to particular function invocations, and typically used to simplify or speed up172

the implementation via imperative features. Such ad-hoc variables do not survive termination173

of the function, and are better not made persistent in the Isabelle context.174

Following this observation, we distinguish local state variables from global state variables175

that are managed in the context. This works by marking the variables in the original176
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Figure 1 A Quotation in the HOL4-environment and IDE markup in Isabelle/jEdit.

HOL4 sources, using the type Uref.t that is merely a clone of ref in HOL4. Now we can177

distinguish the two kinds of references in the virtualized Isabelle environment: unmarked ref178

becomes our Context_Var.var, and Uref.t becomes Unsynchronized.ref of Isabelle/ML179

[21, §0.7.9].180

How to distinguish the two kinds of variables in the vast body of HOL4 sources? Our181

pragmatic approach is based on run-time profiling. For each static occurrence of Context_Var182

its number of dynamic allocations is reported. Then we inspected the worst “memory leaks”183

to judge their role in the program: the result is recorded in the official HOL4 sources.184

3.3 Quotation Filter185

HOL4 extends SML syntax with quotations to allow embedding of logical entities (types and186

terms) with their own syntax into ML.2 HOL4 quotations come in different forms, we will187

illustrate the concept only for terms. A term quotation consists of a string delimited by two188

single back-quotes, e.g., ‘‘string‘‘. The HOL4 QuoteFilter expands this to ML source189

Parse.Term [QUOTE "string"]. It means that the string is parsed at run-time at the spot190

where this is inlined into the ML source, using the syntax of the implicit theory.191

Our HOL4-environment in Isabelle should support quotations, too, so we include the192

QuoteFilter directly into it. We also want to use the rich capabilities of the Isabelle Prover193

IDE: this requires original source positions passed on to the generated ML text. The Isabelle194

setup of PolyML.compiler (Section 2) turns results from static analysis by the ML compiler195

into markup that Isabelle/jEdit presents to the user as colors, popups, hyperlinks etc.196

QuoteFilter is implemented with the lexical analyzer generator ML-Lex [1]. We made197

minor modifications to that in the HOL4 repository, to have it return precise position198

information (together with the expanded text). Consequently, the Isabelle/HOL4 source text199

provides ML IDE annotations both for SML and the result of inlined quotations (but not200

inside the HOL4 term language, unlike Isabelle). The example in Figure 1 illustrates this201

Prover IDE experience: The embedded HOL4 term t has ML type KernelTypes.term; this202

can be inspected by hovering with the mouse cursor over t.203

3.4 Implicit “Undo” of Changes in HOL4-state204

We can now illustrate the advantage of implicit “undo” with the HOL4-state. Assume you205

declare a constant foo, realize that you spelled it wrong and want to redeclare it as fop.206

When interacting with the HOL4 toplevel, you need to keep the global state of constants in207

mind, delete foo (make it inaccessible in the term language), and introduce fop like this:208

> Theory.new_constant("foo", Type.bool);209

2 This is similar to antiquotations in Isabelle, but the terminology is reversed, because the outer source is
the Isabelle theory and proof language, which may quote ML, which may antiquote the term language.
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> Theory.delete_const "foo";210

> Theory.new_constant("fop", Type.bool);211

With virtual state management by Isabelle, however, it suffices to edit the document,212

changing foo to fop and the previous declaration of foo simply disappears (see Figure 2).

 
Figure 2 Implicit “undo” of operations on virtual state in HOL4 in Isabelle/jEdit. After editing

foo to fop, fop is no longer registered as a constant CONST, but is parsed as a variable VAR.

213

3.5 The Standard Kernel in the Virtualized Environment214

To test that everything is properly set up, we load the original HOL4 sources (with the215

standard kernel) in the previously described HOL4-environment. So in this case, HOL4 can216

be seen as an isolated application running in the HOL4-environment, without any connection217

to the logic of Isabelle/HOL whatsoever. We did this for the following build-sequences:218

core: e.g., natural numbers, datatypes, lists, and bossLib219

more: e.g., integers, topology, n-bit vectors220

large: e.g., real numbers, probability theory, temporal logic, floating point numbers221

Figure 4 shows performance figures of virtualized HOL4 vs. original HOL4. Broadly222

summarized, virtualized HOL4 is about 1.5 times as slow.223

4 An Isabelle/HOL Kernel for HOL4224

Now that we have demonstrated that the HOL4-environment provides a suitable environment225

to run HOL4 in Isabelle, let us take a look at what is required to have HOL4 produce actual226

Isabelle/HOL theorems. This requires an implementation of the actual logical kernel, i.e.,227

modules for types, terms, and theorems, which we describe in Section 4.1. But it also requires228

modifications to the theory management of HOL4 to properly integrate in the virtualized229

HOL4-environment with Isabelle’s theory management, which we describe in Section 4.2. We230

report on performance measurements in Section 4.3.231

4.1 Logical Kernel232

HOL4 and Isabelle/HOL both follow the LCF-approach, which means they define an ab-233

stract datatype of theorems with inference rules as (type-safe) operations [4]. Note that234

Isabelle/HOL’s types, terms, and theorems are actually implemented in Isabelle/Pure.235

The HOL4-Kernel is the collection of ML modules for types, terms, and theorems in236

HOL4. HOL4 prescribes an interface (ML signatures) to the HOL4-Kernel, which makes237

it possible to select different implementations of the HOL4-Kernel at compile time. HOL4238

comes with a standard HOL4-Kernel, where terms are represented with de-Bruijn indices and239

explicit substitutions, as well as an experimental HOL4-Kernel with named bound variables.240

In the subsequent implementation of our Isabelle HOL4-Kernel, types, terms, and theorems241

of the HOL4-Kernel interface are implemented by their counterparts in Isabelle/Pure.242
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datatype preterm =
Const of string * typ

| Free of string * typ
| Bound of int
| Abs of string * typ * preterm
| $ of preterm * preterm
| Var of indexname * typ

(a) Preterms in Isabelle/Pure

datatype term =
Const of kernelid * hol_type

| Fv of string * hol_type
| Bv of int
| Abs of term * term
| Comb of term * term
| Clos of term Subst.subs * term

(b) Internal terms in the standard HOL4-Kernel.

Figure 3 Different term representations in Isabelle and HOL4.

4.1.1 Types243

Besides constructor names, Isabelle’s type language only differs from the standard HOL4-244

Kernel in that it is many-sorted and includes schematic type variables. Therefore, all245

types produced by our kernel have the base sort HOL.type and do not include schematic246

type variables. So the type structure is mainly a copy of the standard HOL4-Kernel with247

constructors replaced and some small adaptations.248

The Isabelle/Pure theorem module does not use these (unchecked) types directly, but249

rather operates on values of the abstract type ctyp, which represents types that are well-250

formed wrt. some theory. Certifying types is an expensive operation, and since the Isabelle251

HOL4-Kernel should never need to produce malformed types, it would be beneficial to use252

certified types as our underlying type representation.253

But unfortunately this is impossible, because the HOL4-Kernel (and subsequently all of254

HOL4) requires that hol_type is an ML equality type. Isabelle/Pure’s abstract type ctyp255

does not satisfy this requirement and it is unrealistic to remove this requirement from the256

HOL4-Kernel.257

There are two occurrences in the Isabelle HOL4-Kernel where certification of types is258

necessary: The first occurrence is instantiation of type variables, INST_TYPE in HOL4 that259

maps to Thm.instantiate_frees). In this case it is reasonable to expect that the size260

of these types is small, so that we can ignore this fine point. The second occurrence is261

construction of variables Term.mk_var : (string * hol_type) -> term. Variables are262

constructed so frequent that re-certification can be prohibitively expensive. We work around263

this by introducing a cache where already certified types can be looked up.264

4.1.2 Terms265

The HOL4-Kernel interface fixes an abstract interface to well-typed terms. In Isabelle/Pure,266

well-formed and well-typed terms are an abstract subtype cterm (for certified term) of a267

datatype of preterms3. Figure 3 compares the representation of preterms in Isabelle/Pure268

and terms in the standard HOL4-Kernel. Constants Const and free variables Free/Fv269

are constructed from a name and a type, bound variables Bound/Bv are represented with270

de-Bruijn indices. In Isabelle/Pure, λ-abstraction Abs takes information on how to display271

the bound variable with a string, the type of the bound variable, and a body. The standard272

HOL4-Kernel maintains the invariant that Abs only occurs with a free variable Fv as first273

argument, thereby representing the same information as Isabelle/Pure. Function application274

3 This actually is the datatype term in Isabelle, but to avoid confusion, we call it preterm here.
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of function f and argument x is written as infix operation f $ x or combination Comb. Var275

in Isabelle represents schematic (unifiable) variables, but this is not needed for HOL4.276

HOL4’s standard kernel has an explicit constructor Clos for closures, terms with an277

environment attached to them. For rewriting-heavy applications (e.g., the CakeML bootstrap-278

ping), Clos might be performance-critical. Nevertheless, we decided to ignore this feature for279

the moment, because e.g., the experimental kernel does not feature closures, either. Should280

one wish to achieve the same asymptotic complexity for rewriting with explicit closures, one281

could add a special Let-construct to Isabelle/HOL. Pattern-matches on preterms in the282

Isabelle HOL4-Kernel would then need to introduce a special case that tests for the presence283

of this special Let constant (just like the standard HOL4-Kernel has a special case for Clos).284

While the Isabelle/Pure interface to cterm is rather minimal, it exposes some primitives285

for building abstractions and applications without having to re-certify the result. This allows286

us to base our implementation of the HOL4-Kernel term structure on certified terms, avoiding287

the expensive operation of certification as much as possible.288

One slight complication was that, at the beginning of our work, the type of terms was289

declared as an eqtype in the HOL4-Kernel signature, and thus could not be instantiated with290

an abstract type. The HOL4 developers had already started to work (with an independent291

motivation) towards removing the eqtype constraint, and this removal is now completed.292

We encountered another problem: the HOL4-Kernel sometimes produces malformed terms,293

in particular terms containing loose bound variables. These terms result from break_abs,294

which destructs an abstraction without turning the variable bound under the abstraction into295

a free variable. We work around this by using free variables with special names to represent296

the loose variables. These uniquely named variables are also useful to efficiently destruct297

abstractions in the regular way (i.e. by turning the bound variable into a free variable), which298

may otherwise involve renaming, and to ensure that Isabelle/Pure does not rename variables299

using its own convention, which is different from that of the HOL4-Kernel.300

We cannot pattern-match on the abstract type cterm but would like our implementation301

to stay close to that in the standard HOL4 kernel, which heavily uses pattern matching302

on terms. We therefore match on the underlying preterm of a cterm and carry out the303

actual operation on the result of destructing the cterm according to the matched pattern.304

To illustrate this technique, here is part of the implementation of the operation trav, which305

applies a function f : cterm -> unit to all constants and free variables in a term.306

fun trav f ct =307

let fun trv (Free _) ct = f ct308

| trv (Rator $ Rand) ct =309

let val (cRator,cRand) = dest_comb ct310

in (trv Rator cRator ; trv Rand cRand)311

end312

...313

in trv (preterm_of ct) ct end314

Here we access the underlying preterm of ct using the Isabelle/Pure function preterm_of,315

which is cheap, and then give both to the internal function trv, which pattern matches on316

the term and either applies f at the appropriate places or destructs the cterm according to317

the matched pattern with dest_comb.318

4.1.3 Axiomatization of HOL319

The HOL4-Kernel axiomatizes higher order logic. For the Isabelle HOL4-Kernel, we obviously320

do not want to add new axioms, but rather map calls that axiomatize to existing constants,321

axioms, and theorems in Isabelle/HOL.322
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The HOL4-Kernel has builtin type operators for functions ->, booleans bool, and an323

inductive type ind, which we map directly to the corresponding type operators from the324

axiomatization of Isabelle/HOL for functions ⇒, booleans bool, and an inductive type ind.325

The HOL4-Kernel has builtin constants for equality = : ’a -> ’a -> bool, Hilbert326

choice @ : (’a -> bool) -> ’a, and implication ==> : bool -> bool -> bool. The327

axiomatization of Isabelle/HOL also contains equality (=) :: ’a ⇒ ’a ⇒ bool, implication328

(−→) :: bool ⇒ bool ⇒ bool, and Hilbert choice Eps :: (’a ⇒ bool) ⇒ ’a, so we can329

map to those directly, as well.330

The HOL4-Kernel introduces axioms for defined constants (T, F, ONE_ONE, ONTO):331

("BOOL_CASES_AX", ‘‘!t. (t=T) \/ (t=F)‘‘)332

("ETA_AX", ‘‘!t:’a->’b. (\x. t x) = t‘‘)333

("SELECT_AX", ‘‘!(P:’a->bool) x. P x ==> P ($@ P)‘‘)334

("INFINITY_AX", ‘‘?f:ind->ind. ONE_ONE f /\ ~ONTO f‘‘)335

Without extending the set of axioms in Isabelle/HOL, we map those axioms to theorems336

that we proved explicitly in Isabelle/HOL.337

4.1.4 Theorems338

The HOL4-Kernel theorem module modifies the internal representation of theorems in a339

soundness-critical way. In contrast to that, the Isabelle/Pure-based implementation simply340

defers operations to (trusted) Isabelle/Pure primitives.341

Usually, Isabelle/Pure inferences cannot be used directly, but require some adaptation of342

interfaces. This is because of the distinction between meta-logic Isabelle/Pure and object-logic343

Isabelle/HOL. For example, the HOL4-Kernel primitive MK_COMB : thm -> thm -> thm is344

supposed to yield a theorem f x = g y from theorems f = g and x = y. Isabelle/Pure345

provides a similar inference Thm.combination : thm -> thm -> thm, but for meta-equality.346

I.e., it produces f x ≡ g y from theorems f ≡ g and x ≡ y. The Isabelle/HOL axiomati-347

zation states that HOL-equality (=) reflects Pure-equality (≡), so we can insert inference348

steps to convert theorems with Pure-equality to (and from) theorems with HOL-equality.349

Overall, we do not use the builtin unification of Isabelle/Pure, but always compute explicit350

instantiations, hoping that this is the most efficient implementation.351

4.2 Theory Management352

HOL4 uses the dedicated Holmake tool to manage dependencies of source files. Moreover,353

it can compile theory files from script files: this requires special attention when trying to354

incorporate this in the HOL4-environment and cooperate with the Isabelle HOL4-Kernel.355

4.2.1 HOL4-Scripts and HOL4-Theory Files356

Theories in HOL4 are structured along a concept called theory segments. A segment records357

logical declarations like types, constants, and theorems, together with pointers to parent358

segments. The theory represented by a segment is the union of all the logical declarations of359

the segment and its parents. A theory segment is constructed in different stages:360

One starts from a so-called script. A script contains all the ML-declarations that define361

types, constants, prove theorems, or e.g., augment syntax.362

When compiling a script, all changes that the script makes w.r.t. to the current (logical)363

theory are recorded and saved in a special file-format. Compilation of a script will also364

generate theory files.365
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Theory files are ML modules that contain all the information required to load the recorded366

changes and apply them to the current (logical) theory.367

Note that re-importing a HOL4 theory from the file-system does not reconstruct theorems368

by kernel inferences, instead it trusts the imported statement with an oracle. We do not369

want to reproduce this part of the workflow in Isabelle/HOL, in particular because we do370

not want to increase the trusted code base by theorem import (and essentially all of HOL4).371

Instead we remember the theorem values that are created when running the script. HOL4372

offers a hook that allows users to register custom code to be called upon exporting a theory,373

and we use this to store the theorems as abstract ML values in the universal Isabelle context.374

We provide a small wrapper around HOL4’s module that reads theories from the file-375

system. This wrapper does not assume theorems via an oracle, it rather looks up the theorem376

values that were previously stored in the Isabelle context.377

In the HOL4 system, scripts are run in a separate process, and the only artifacts that378

they produce are the generated theory files. This means that in our case, after running a379

script, the HOL4-state needs to be reset: the script modified the underlying HOL4 theory,380

but these changes are not supposed to persist. In order to do so, we simply remember the381

HOL4-state before compiling the script in Isabelle/ML and update the HOL4-state afterwards382

to the previously remembered state.383

4.2.2 Holmake384

Holmake is the main tool to manage dependencies of script files, theory files and other385

ML files for HOL4. Upon invocation in a directory containing HOL4 source files, Holmake386

computes dependencies between files, and compiles and runs plain ML code, proof scripts,387

and generated theory files.388

We can compile and run Holmake in the HOL4 ML environment, but its overall setup389

is — due to the previous discussion about storing theorems when running scripts — too390

alien for us to use it in the HOL4-environment. Instead, we write custom code that emulates391

the behavior of Holmake reasonably well. Our emulation builds on a part of Holmake, the392

Holdep tool. From the output of Holdep, we recurse over the dependencies. With additional393

dependencies for Theory files (they depend on Script files), our emulation is sufficiently close394

so that it “does the right thing”4 for a large part of HOL4’s source directories.395

On several occasions, HOL4 saves a “heap”, i.e., the global state of the Poly/ML process396

after loading a number of SML modules and theories. In our virtual environment, this simply397

amounts to keeping the HOL4-state instead of resetting it to the previous value.398

4.3 Performance Measurements399

In this section we report on performance measurements. We investigate whether the overhead400

incurred by virtualization and adapting kernel interfaces is reasonably moderate and how401

well it scales with the size of the application.402

In Figure 4, we compare the elapsed time for building theories in HOL4 source directories403

from the core, more, and large build sequences. We exclude the directories that take less404

than 2 seconds to build in standard HOL4. The reported times are the minimum out of405

5 measurements for each directory. The experiments were run (single threaded, because406

4 Quoting a comment in the implementation of Holmake.
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Figure 4 Performance measurements: HOL4 source directory on the x-axis, sorted by elapsed
time (in parentheses) to build that directory with standard HOL4. Bars show the time (relative to
standard HOL4) to build that directory with virtualized standard HOL4-Kernel (black) and the
Isabelle HOL4-Kernel (white).

Isabelle and HOL4 have different schemes for parallelization) on a laptop computer with407

Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz and 32 GB of RAM, running Windows 10.408

We observe that the virtual HOL4-Kernel takes about 1.5 times as long as standard409

HOL4. We interpret this as an indication that we have a good handle on the management of410

global and local state (Sections 3.1 and 3.2).411

Some directories build faster with the virtual HOL4-Kernel. This is likely due to different412

bootstrapping in the virtual HOL4-environment: more dependencies are already pre-loaded.413

Another reason could be fewer IO operations in the HOL4-environment, because we virtualize414

access to the file-system by in-memory data lookup and storage.415

The final observation concerning Figure 4 is that the slowdown of the Isabelle HOL4-416

Kernel is never by more than a factor of 4.5 and usually lies between one and three. We believe417

that this is a moderate overhead for the adaptations between inferences of Isabelle/Pure and418

the HOL4-Kernel interface (described in Section 4). Moreover this overhead seems to be419

constant w.r.t the size of the development, so we expect it to scale to even bigger applications.420

Let us now compare our approach of transporting theorems from HOL4 to Isabelle/HOL421

with OpenTheory (see also Section 7). With the OpenTheory approach, HOL4 scripts422

are run with a HOL4-Kernel that produces OpenTheory files (.art). These files are post-423

processed with the OpenTheory tool (opentheory info --article), which, e.g., deletes424

unwanted constants. The resulting file can then be imported into Isabelle/HOL, once the425

importer is set up with information on how to map HOL4 type operators and constants426

to their Isabelle/HOL counterparts. In Table 1, we report our performance measurements427

for exporting and importing the HOL4 theory relation and real_topology. We chose428

relation because it has few dependencies and therefore allowed us to set up the OpenTheory429

importer with moderate effort. We chose real_topology in order to investigate performance430

on a large theory: regarding build time, it is the largest theory in the basis library.431

The actual import is faster than the original build of the theory relation. But producing432

OpenTheory files is slower than our Isabelle HOL4-Kernel. Post-processing of OpenTheory433



12 Virtualization of HOL4 in Isabelle

relation real_topology
absolute [s] relative absolute [s] relative

1 standard HOL4 1.8 1.0 68.4 1.0

2.1 HOL4 OpenTheory kernel (.art) 10.2 5.7 546 8.0
2.2 opentheory info --article (.ot.art) 31.2 17.3 2416 35.3
2.3 Isabelle OpenTheory import 0.9 0.5

3 Isabelle HOL4-Kernel 6.1 3.4 310 4.5
Table 1 Performance in comparison with OpenTheory. Absolute time and time relative to

standard HOL4 (row 1) are reported for transporting HOL4 theories relation and real_topology
to Isabelle/HOL via OpenTheory (rows 2.1-2.3) and our Isabelle HOL4-Kernel (row 3)

files is very expensive, it takes more than 17 times as long for the small relation theory434

and even 35 times as long for the large real_topology theory.435

4.4 Debugging436

When attempting to build HOL4 using our Isabelle HOL4-Kernel, we came across many437

failures that were related either to implementation errors or to unexpected behavior of the438

Isabelle/Pure primitives we use. Debugging these failures was often a challenge: Errors439

frequently occurred far from their root cause, especially when program flow in HOL4 is440

controlled by exceptions. In order to help with the debugging process, we implemented yet441

another kernel that performs every operation using both the standard HOL4-Kernel and442

our Isabelle HOL4-Kernel simultaneously, comparing their results. This yields an error at443

the earliest point where the behavior of the standard kernel and the Isabelle kernel diverge444

and therefore points directly to discrepancies in the implementation (together with concrete445

arguments that caused the bad behavior).446

5 Transfer447

In order to keep the Isabelle HOL4-Kernel as simple and maintainable as possible, we do448

not make any attempts at transforming the imported definitions or theorems to somewhat449

more idiomatic concepts in Isabelle/HOL. For example, apart from the axiomatization in450

Section 4.1.3, we do not map types/constants from HOL4 to existing types/constants in451

Isabelle/HOL. We also do not use the Isabelle/HOL datatype package, but simply use the452

constructions performed by HOL4.453

Overall, we get a completely separate formalization of closely related concepts. E.g., both454

Isabelle and HOL4 define natural numbers and lists. We realign those in a post-hoc fashion,455

and Isabelle’s transfer package [5, 13] is a powerful, flexible, and efficient tool perfectly456

suited for these needs.457

Subsequently, we propose an approach that allows the user to obtain an idiomatic458

Isabelle/HOL formalization from the imported HOL4 libraries. This requires some user459

interaction, but arguably there has to be some human interaction to judge what an “idiomatic”460

definition looks like. We provide infrastructure to make this process as comfortable as possible.461

In particular, we enable the user to mix HOL4 syntax and Isabelle/HOL syntax in order to462

state and prove theorems that relate Isabelle/HOL concepts to HOL4 concepts.463
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The running example to illustrate our approach will be lists. The HOL4 formalization464

defines the type of lists as a datatype:465

Datatype.Hol_datatype ‘list = NIL | CONS of ’a => list‘466

In the Isabelle HOL4-Kernel (Section 4), we adopt the naming scheme that identifiers id467

from a HOL4 theory segment seg are mapped to Isabelle identifiers seg___id. This means468

that in the Isabelle/HOL foundation, the above HOL4-datatype definition results in the469

definition of a type ’a list___list and constants list___NIL, list___CONS (the datatype470

definition is in the segment list).471

typedecl ’a list___list472

consts list___NIL::’a list___list473

consts list___CONS::’a ⇒ ’a ⇒ ’a list___list474

In the rest of this section, we show how to relate these constants to the “idiomatic”, existing475

datatype constructors of lists in Isabelle/HOL:476

datatype ’a list = Nil | Cons ’a "’a list"477

5.1 Mixing HOL4 and Isabelle Entitites478

We first describe how a user can mix HOL4 and Isabelle-syntax. This takes inspiration479

from an experiment by Hupel [6] that allows the embedding of ML values into a formal480

context. We provide special syntax for Isabelle, that allows the user to write HOL4‹expr› in481

inner syntax, and expr will be parsed by the HOL4 parser and return the corresponding482

Isabelle/HOL term. For example, a property P of two-element HOL4-lists can be ex-483

pressed as P (HOL4‹length [x, y]›), which will be parsed as P (list___length (list___CONS484

x (list___CONS y list___NIL))).485

Theorems produced by the Isabelle HOL4-Kernel do not even show up in the Isabelle/Isar486

namespace, they are only stored as ML-values in the universal context in the HOL4-487

environment. In order to comfortably refer to HOL4 theorems in Isabelle/Isar, we provide488

an attribute [[hol4_thm segment.THEOREM]] that refers to the theorem THEOREM from the489

HOL4-segment segment.490

5.2 Transfer Rules491

The main tool for proving theorems along isomorphisms is the transfer package [5, 13].492

The central element for setting up the transfer package are transfer rules. For the purposes493

of this presentation, transfer rules are of the form R c d for relations R :: ’a => ’b => bool494

and constants c :: ’a, d :: ’b. For simplicity, we assume that R is bi-total and bi-unique,495

i.e., the graph of a bijection between ’a and ’b, but the transfer package is sufficiently496

flexible to deal with partial and quotient relations as well. We say that R c d is a transfer497

rule for constant d.498

Relators are used to construct relations for compound types, in particular the function499

relator with infix syntax ===> relates functions f and g that yield S -related results f x, g x500

for R -related arguments x, y. Written as a transfer rule: (R ===> S) f g.501

Given a set of transfer rules and a theorem, the transfer package looks up transfer502

rules for each of the constants that occur in the theorem and composes them (recall that the503

transfer relations encode bijections) to obtain a theorem for an isomorphic (along the transfer504

rules) theorem. E.g., given a transfer rule (R ===> (=)) P Q for predicates P :: ’a => bool505

and Q :: ’b => bool, a transfer rule R c d to transfer a constant d::’b to c::’a, and a506
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theorem Q d, the transfer package will produce the theorem P c. To clarify the intuition, Q507

and d will be constants imported from HOL4, and P and c related idiomatic constants in508

Isabelle/HOL.509

The basis of our setup consists of transfer rules for all of the constants defined in the510

HOL4 bool theory. To give an example, the transfer rule for universal quantification relates511

the HOL4 all-quantifier ! with the Isabelle/HOL all-quantifier All for (A ===> (=)) -related512

predicates, given a bijection A.513

lemma [transfer_rule]: "((A ===> (=)) ===> (=)) All HOL4‹(!)›" if "bi_total A"514

We prove similar rules for e.g., conjunction, implication, negation, True, and False. The515

proofs are straightforward, because the definitions in HOL4 and Isabelle/HOL both follow516

the axiomatization from Section 4.1.3.517

5.3 Setting up Transfer for Lists518

We now proceed with setting up transfer rules for HOL4-lists. The HOL4 datatype package519

constructs (among others) an induction theorem:520

list_INDUCT = ‘!P. P [] /\ (!t. P t ==> !h. P (h::t)) ==> !l. P l‘521

In the Isabelle/HOL foundation, we can look up this theorem with the attribute [[hol4_thm522

‹list.list_INDUCT›]]. The resulting theorem looks like this:523

bool___! (λP. bool___/\ (P list___NIL)524

(bool___! (λt. P t −→ bool___! (λh. P (list___CONS h t)))) −→ bool___! P)525

It can be transferred (automatically, using the untransferred attribute) along the transfer526

rules for the constants from the HOL4 bool theory (bool_! and bool___/\) in order to527

prove a proper Isabelle/HOL induction rule, mixing in HOL4-syntax for the HOL4-constants528

NIL and CONS:529

lemma hol4_list_induction[case_names NIL CONS, induct type]:530

"P x" if "P HOL4‹NIL›" and "(
∧
x xs. P xs =⇒ P (HOL4‹CONS› x xs))"531

using [[hol4_thm listTheory.list_INDUCT›, untransferred, of P x]] by simp532

In order to establish a connection between lists in Isabelle/HOL and lists in HOL4, we533

define a function (in Isabelle/HOL) from Isabelle/HOL lists to their HOL4-counterparts.534

fun convert_list :: "’a list ⇒ ’a list___list"535

where "convert_list [] = HOL4‹NIL›"536

| "convert_list (x#xs) = HOL4‹CONS x› (convert_list xs)"537

With the induction rule for HOL4-lists, as well as injectivity of CONS and disjointness of538

NIL and CONS—those rules are also provided by HOL4—we can easily prove injectivity and539

surjectivity of convert_list. Therefore the relation (λx y. convert_list x = y) is bi-total540

and bi-unique and it can be used as a transfer relation for lists of elements of the same type.541

The transfer package provides some more support, in particular automation to set up542

parametric transfer rules:543

setup_lifting ‹Quotient (=) convert_list convert_list’ (λx y. convert_list x = y)›544

parametric ‹(list_all2 A ===> list_all2 A ===> (=)) (=) (=)›545

This defines a relator rh4_list::(’a ⇒ ’b ⇒ bool) ⇒ ’a list ⇒ ’b list ⇒ bool, where546

rh4_list A is hs expresses that is and hs are of the same shape and their elements are547

(pointwise) in relation A. With this setup, we can prove transfer rules for NIL and CONS548
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lemma [transfer_rule]: rh4_list A Nil (HOL4‹NIL›)549

lemma [transfer_rule]: (A ===> rh4_list A ===> rh4_list A) Cons HOL4‹CONS›550

With these rules proved, the transfer package can be used to automatically transfer every551

theorem that involves NIL, CONS and constants from HOL4 theory bool.552

5.4 Primitive Recursive Definitions553

HOL4 does not expose generic recursors for primitive recursive functions. A convenient554

way to transfer constants that are defined by primitive recursion in HOL4 is to define (in555

Isabelle/HOL) a recursor for HOL4 lists in terms of the recursor rec_list for Isabelle/HOL556

lists. The command lift_definition provides infrastructure to define constants in terms of557

isomorphic constants (here the isomorphism is between between list and list___list and558

has been set up by the previous setup_lifting command).559

lift_definition rec_hol4_list::560

"’a ⇒ (’b ⇒ ’b list___list ⇒ ’a ⇒ ’a) ⇒ ’b list___list ⇒ ’a"561

is rec_list::"’a ⇒ (’b ⇒ ’b list ⇒ ’a ⇒ ’a) ⇒ ’b list ⇒ ’a"562

parametric list.rec_transfer .563

Then one only needs to express the respective constants in terms of this recursor, e.g., for564

appending lists:565

lemma "append xs ys = rec_list ys (λ x _. Cons x) xs"566

lemma "HOL4‹APPEND› xs ys = rec_hol4_list ys (λ x _. HOL4‹CONS› x) xs"567

These lemmas follow directly from the definition of the recursors and the involved functions.568

Then the transfer rule for APPEND ("(rh4_list A ===> rh4_list A ===> rh4_list A) append569

(HOL4‹APPEND›)") can be proved automatically by the transfer_prover (after unfolding the570

above equivalences), because there are transfer rules for each of the involved constants.571

5.5 Example: Transfer Theorems572

We demonstrate the possibility of transferring theorems from HOL4 to Isabelle/HOL and573

back on a derived example. Assume that someone proved FERMAT in HOL4, which we simulate574

by an axiomatization in the virtual HOL4:575

val FERMAT = Theory.new_axiom ("FERMAT",576

‘‘!a b c n. SUC (SUC 0) < n ==> ~(SUM (MAP (\x. SUC x ** n) [a; b]) = SUC c ** n)‘‘)577

A significant result! Because we proved transfer rules for all of the constants occurring in578

the theorem statement, we can import this result with a single invocation of untransferred.579

lemma fermat: "Suc (Suc 0) < n =⇒ (
∑

x←[a, b]. (Suc x) ^ n) 6= Suc c ^ n"580

using [[hol4_thm fermatTheory.FERMAT, untransferred]] by simp581

We can even communicate this result back to the virtual HOL4 system: First of all, we need582

to prove the lemma (in Isabelle/HOL) in a HOL4-friendly format. Again, we have transfer583

rules for all of the constants, so a single invocation of transfer allows us to prove the lemma.584

lemma fermat_hol4: "HOL4‹! a b c n. SUC (SUC 0) < n ==>585

~(SUM (MAP (\x. SUC x ** n) [a; b]) = SUC c ** n)›"586

by transfer (use fermat_isabelle in simp)587

Then val fermat_hol4 = @{thm fermat_hol4} can be used as a regular theorem value in588

the virtual HOL4 environment and prove the round-tripped theorem FERMAT2.589

val FERMAT2 = store_thm("FERMAT2", ‘‘! a b c n.590

SUC (SUC 0) < n ==> ~(SUM (MAP (\x. SUC x ** n) [a; b]) = SUC c ** n)‘‘,591

METIS_TAC [fermat_hol4]);592
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5.6 Discussion: Manual Interaction593

Our proposed approach clearly involves some amount of manual interaction. First, suitable594

definitions in Isabelle/HOL need to be identified or defined. Then, suitable transfer rules595

need to be proved for each of these definitions. But (and that is an important aspect), the596

amount of manual interaction is proportional to the number of constant definitions, and not597

to the size or number of results that one wants to transfer.598

This manual effort is certainly well invested for larger applications, in particular because599

intermediate constructions need not be set up in order to transfer final results. For example,600

there is no need to set up transfer for all intermediate languages in the CakeML stack to601

transfer a final correctness theorem that involves only machine-code and CakeML-syntax.602

6 Conclusion603

Thanks to the proper setup of a virtual ML environment, we have managed the daunting task604

of taming mutable state in a large application program: HOL4. Many big and small problems605

had to be overcome; it is great to see such a collaboration between different systems already606

work so well. This effort has induced changes to the internals of both HOL4 and Isabelle,607

which were overseen by the respective experts and incorporated into their repositories.608

All involved systems profit from this work: HOL4 has yet another kernel, and remaining609

issues of the emulation could point to HOL4 code that needs further improvement. Isabelle610

now has a systematic treatment of alternative ML environments, with user-defined static611

basis and token language. Since virtual HOL4 runs inside Isabelle/jEdit [20], we could even612

see that as a viable IDE for HOL4 in the near future, although its user community is still613

very content with more traditional vi and Emacs interfaces.614

We imagine fruitful interoperability: For example, HOL4 tactics could be used for Isabelle615

proofs, or HOL4 users could work with Isabelle/HOL formalizations (e.g., from the AFP) in616

the HOL4-environment.617

A full import of the CakeML project in Isabelle/HOL is still future work, but it could618

yield a much larger user-base for the CakeML formalization, when all the tools of HOL4 and619

Isabelle/HOL can be combined in a single environment. The material on CakeML by Hupel620

in the AFP [7] is already awaiting to be formally connected.621

7 Related Work622

In 1995, Slind implemented the TFL package [18] generically, such that the ML sources623

worked both for Isabelle/HOL and HOL4. A few years later, both sides were maintained624

independently and diverged: today Isabelle has still a legacy recdef command and HOL4 a625

substantially extended Definition function, both based on TFL. Despite its limited success626

in bridging the gap between Isabelle/HOL and HOL4, the TFL package shares the key idea627

of our approach to load original ML sources into the other proof assistant.628

More conventional export and import facilities write internal data structures to the629

file-system (essentially a trace of the inference kernel and theory content) and load them630

into the other system. A notable example is the HOL(Light) to Isabelle converter: the631

first version by Skalberg and Obua [16] had scalability problems due to massive amounts of632

XML data written to a Unix file-system. This has been greatly improved by Kaliszyk and633

Krauss [10]: the HOL-Light standard library is loaded into Isabelle/HOL in a few minutes.634

OpenTheory by Hurd [8] is a similar approach based on kernel traces, but its theory635

and proof representations follow a published standard format. This has been designed to636
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cover all members of the HOL family, but this excludes Isabelle/HOL with its distinctive637

deviations in the primitive logic (e.g. support for type-classes with overloaded definitions).638

Consequently, the OpenTheory importer for Isabelle did not get beyond experimental state639

so far, and an exporter never worked out. We also see fundamental problems in scalability640

to really large libraries: the OpenTheory standard library [9] is rather small compared to641

applications seen today, e.g. in Isabelle AFP [3], or CakeML [12].642

More ambitious export-import projects even attempt to bridge the gap between HOL-643

Light and Coq [11]. This introduces new questions on the logic, but the fundamental problems644

of scalability and systems engineering remain the same. It should be noted that our approach645

is closely related to the original idea behind LCF [4]: instead of handing around proof terms,646

we merely run a program in a controlled manner to get to the intended theory content.647
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