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Abstract
The Poincaré-Bendixson theorem is a classical result in the
study of (continuous) dynamical systems. Colloquially, it
restricts the possible behaviors of planar dynamical systems:
such systems cannot be chaotic. In practice, it is a useful tool
for proving the existence of (limiting) periodic behavior in
planar systems. The theorem is an interesting and challeng-
ing benchmark for formalized mathematics because proofs
in the literature rely on geometric sketches and only hint at
symmetric cases. It also requires a substantial background
of mathematical theories, e.g., the Jordan curve theorem,
real analysis, ordinary differential equations, and limiting
(long-term) behavior of dynamical systems.

We present a proof of the theorem in Isabelle/HOL and
highlight the main challenges, which include: i) combining
large and independently developed mathematical libraries,
namely the Jordan curve theorem and ordinary differential
equations, ii) formalizing fundamental concepts for the study
of dynamical systems, namely the 𝛼,𝜔-limit sets, and peri-
odic orbits, iii) providing formally rigorous arguments for the
geometric sketches paramount in the literature, and iv) man-
aging the complexity of our formalization throughout the
proof, e.g., appropriately handling symmetric cases.

CCS Concepts • Mathematics of computing → Ordi-
nary differential equations; • Theory of computation
→ Logic and verification.
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Figure 1. A visualization of Sel’kov’s model of glycolysis
¤𝑥 = −𝑥 + 𝑎𝑦 + 𝑥2𝑦, ¤𝑦 = 𝑏 − 𝑎𝑦 − 𝑥2𝑦 for the parameter values
𝑎 = 0.08 and 𝑏 = 0.6 [30, 32]. Forward trajectories from three
selected points are shown in color.
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1 Introduction
The qualitative study of ordinary differential equations was
initiated by the seminal work of Poincaré [27]. The key idea
is to study the behavior of ordinary differential equations by
analyzing the differential equations themselves instead of
solving them explicitly. This qualitative study is at the root of
(continuous) dynamical systems theory [14], especially in the
study of limiting (long-term) behavior of systems specified
by differential equations.
Differential equations in the plane can be visualized by

plotting their associated vector fields. Following Poincaré,
the goal is then to deduce properties of the differential equa-
tions directly from geometric properties of the plot. For ex-
ample, Fig. 1 visualizes Sel’kov’s differential equations model
for the biochemical process of glycolysis [30, 32]. Intuitively,
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the arrows in Fig. 1 visualize the local direction in which
solutions following the differential equations must travel.
By locally (and continuously) flowing along these arrows,
points trace out trajectories in the plane, such as the colored
ones in Fig. 1. From the visualization, one might hypothesize
that Sel’kov’s model exhibits limiting periodic behavior, e.g.,
observe that the trajectory from the red point loops back
onto itself (i.e., it is periodic), while the trajectories from
the blue points tend towards the red trajectory asymptoti-
cally. This, in turn, provides a mathematical explanation for
oscillations observed in the real world glycolysis process.

Yet, this simple visualization belies the difficulty of math-
ematically proving that the periodic behavior actually exists,
and is not an artifact of inaccuracies in the visualization tool.
The classical analytic tool that can be used to establish the
existence of periodic behavior is the Poincaré-Bendixson
theorem, named after Henri Poincaré [27] and Ivar Bendix-
son [4]. In a nutshell, the theorem asserts that the situation
shown in Fig. 1 is the norm for planar dynamical systems: tra-
jectories must either be periodic or tend to a trajectory that
is periodic.1 Notably, the theorem does not hold in higher
dimensions where more complicated behavior is possible.
We formalize the Poincaré-Bendixson theorem in the Is-

abelle/HOL proof assistant [23, 24], drawing on material
presented in several textbooks [6, 7, 9, 25, 28, 33, 34]. Our
proof of the theorem itself mainly follows Coddington and
Levinson [7], Dumortier, Llibre and Artés [9], and Perko [25].
Beyond its applications in formalizing dynamical systems
theory, the theorem is an interesting and challenging bench-
mark for formalized mathematics, because:

1. It requires a mature analysis library, e.g., the proof
makes central use of the Jordan curve theorem2 and
the theory of ordinary differential equations.

2. Proofs in the mathematical literature rely heavily on
geometric intuition and arguing for symmetric cases
without loss of generality.

Our formalization meets the first challenge:
i) It builds on existing work in Isabelle/HOL, namely
the Jordan curve theorem and the theory of ordinary
differential equations (Section 2). Isabelle/HOL’s (real)
analysis libraries are also used extensively.

ii) It provides a new library of fundamental dynamical
systems concepts (Section 3). This library contains defi-
nitions of𝛼,𝜔-limit sets and periodic orbits, and proofs
of their standard mathematical properties.

Our formalization also meets the second challenge:
iii) We prove the Poincaré-Bendixson theorem (Section 4)

as stated in Coddington and Levinson [7, Thms. 2.1,
3.1]. Our proof formalizes the first (as far as we know)
fully rigorous argument for an important geometric

1The precise conditions under which this is true is given later in the paper.
2Technically, the proof only needs the theorem for piecewise smooth curves,
but the theorem is available in full generality in Isabelle/HOL.

lemma (Section 4.2) — this lemma makes fundamental
use of the Jordan curve theorem and is usually argued
based on geometric sketches in textbooks [7, 9, 25].
Our argument is inspired by the gate theorem [3].

iv) We report on a number of formalization techniques
used throughout the proof (Section 5), notably our use
of locales [2] to avoid duplication while reasoning
about symmetric cases for the forward and backward
time trajectories of dynamical systems.

As an application, we use the theorem to prove the exis-
tence of limiting periodic behavior for two examples (Sec-
tion 6), including the instance of Sel’kov’s model in Fig. 1.
The formalization is ≈7000 lines. It is available in the

Archive of Formal Proofs [20] and works with Isabelle2019.3
All definitions and theorems formalized in Isabelle/HOL are
typeset in typewriter font and with boldface keywords. Ex-
planations of formalized arguments also use typewriter font.
Regular typesetting is reserved for informal arguments.

2 Background
Our formalization builds on the existing libraries for analysis
and ordinary differential equations [10, 13, 15, 18, 19, 21] in
Isabelle/HOL and the Archive of Formal Proofs. This section
recalls relevant concepts from these libraries.

2.1 Analysis
This section briefly reviews the most important notation
that is used throughout the paper. Infix ‘ is Isabelle/HOL’s
notation for the image of a function applied to a set, i.e.:

f ‘ X = { f x | x ∈ X }

In Isabelle/HOL’s analysis library, limits are formalized
generically using filters [15] (see Section 5 for more detail).
Two kinds of limits are used frequently in the formalization.
First, a convergent sequence s tending to limit l is written
as s −−−−−→ l. For our formalization’s purposes, it can be
unfolded to its usual (real) analytic definition as follows:
lemma tendsto_sequentially:
"(s −−−−−→ l) ←→

(∀e>0. ∃ N. ∀n≥N. dist (s n) l < e)"

Second, for (divergent) real-valued sequences s, the se-
quence diverging to positive (resp. negative) infinity is writ-
ten as s −−−−−→ ∞ (resp. s −−−−−→ −∞). These similarly obey
the standard unfoldings from mathematical analysis:
lemma filterlim_at_top_sequentially:
"(s −−−−−→ ∞) ←→ (∀w. ∃ N. ∀n≥N. s n ≥ w)"
and filterlim_at_bot_sequentially:
"(s −−−−−→ -∞) ←→ (∀a. ∃ N. ∀n≥N. s n ≤ a)"

Both limits are actually defined using Isabelle/HOL’s no-
tion of generalized limit filterlim as shown below. The for-
malization mostly uses theorems for the general filterlim
constant when reasoning about these limits.

3https://isabelle.in.tum.de/

https://isabelle.in.tum.de/
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lemma filterlim_equalities:
"(s −−−−−→ l) ←→ filterlim s (nhds l) sequentially"
"(s −−−−−→ ∞) ←→ filterlim s at_top sequentially"
"(s −−−−−→ -∞) ←→ filterlim s at_bot sequentially"

2.2 Ordinary Differential Equations
The theory of ordinary differential equations (ODEs) in Is-
abelle/HOL was formalized by Immler et al. [18, 19, 21].
Their formalization includes, for the study of dynamical
systems, the all-important notion of the flow of a dynamical
system [21]. Key properties of the flow are recalled below.
Everything in this paper is developed under the assump-

tion that the given (autonomous) ODE has right-hand side
(RHS) 𝑓 : 𝑋 → 𝑋 where 𝑋 is an open subset of Euclidean
space R𝑛 and 𝑓 is a continuously differentiable function.

¤𝑥 = 𝑓 (𝑥) (1)

These assumptions guarantee that the differential equa-
tions (1) have a unique solution 𝜙 : 𝑋 × R → 𝑋 , which is
henceforth called the flow of the ODE [6]. The value of the
solution to the differential equation at time 𝑡 for a given
initial condition 𝑥 (0) = 𝑥0 ∈ 𝑋 is given by the flow: 𝜙 (𝑥0, 𝑡).
A technical intricacy in the formalization (often elided in
this paper) is that the flow from a particular initial condition
𝜙 (𝑥0, ·) may not be defined for all times 𝑡 ∈ R, but only on
some non-empty, maximal, open existence interval [6].

In Isabelle/HOL’s library for ODEs, the global assumption
of a continuously differentiable RHS 𝑓 is formalized as a
locale [2] with parameters f,f’ for the ODE and X for the
domain of f as follows:
lemma c1_on_open_def: "c1_on_open f f’ X ←→
open X ∧
(∀x. x ∈ X −→ (f has_derivative f’(x)) (at x)) ∧
continuous_on X f’"

Here, f’(x) is a linear function and continuity of f’ is with
respect to the operator norm. The locale c1_on_open f f’ X

is used as the context throughout our formalization. In this
context, the ODE library provides the notion of flow (flow0)
and its associated existence interval (existence_ivl0) as the
main interfaces. The characteristic property of flow0 x0 is
that it obeys the ODE at all times t within its associated
existence interval (existence_ivl0 x0):
lemma flow_has_vector_derivative:
"t ∈ existence_ivl0 x0 =⇒
(flow0 x0 has_vector_derivative

(f (flow0 x0 t))) (at t)"

Additional properties that are used (but not presented
here) are uniqueness and continuity of the flow and the fact
that existence_ivl0 x0 is indeed the maximal interval of
existence for the solution from initial point x0.

A fundamental property of dynamical systems is that the
description of its evolution (i.e., the flow) is a group action of
the real numbers (time t) on the state x. More concretely, this
means that when 0 time passes, the system does not evolve,

and evolving for time s + t must be the same as evolving
first for time s and then for time t:
lemma flow_group_action:
"x0 ∈ X =⇒ flow0 x0 0 = x0"
and
"s ∈ existence_ivl0 x0 =⇒
t ∈ existence_ivl0 (flow0 x0 s) =⇒
flow0 x0 (s + t) = flow0 (flow0 x0 s) t"

2.2.1 Time Reversal
The time reversal property of the flow is often exploited to
symmetrically reason about forward and backward time but
restricting the attention without loss of generality to only the
forward time case. For the moment, wemake the dependency
of flow on differential equation f explicit and write flow0f
for the flow of the ODE with RHS f. It is a theorem that
when negating the ODE’s RHS (think reversing the arrows in
Fig. 1), the flow of the reversed ODE flow0(-f) corresponds
to the flow of the original ODE in backward time -t:
lemma flow_eq_rev: "flow0(-f) x0 t = flow0f x0 (-t)"

Reversing the ODE also flips the existence interval:
lemma existence_ivl_eq_rev:
"t ∈ existence_ivl0(-f) x ←→

-t ∈ existence_ivl0f x0"

These equations underpin the time reversal reasoning used
throughout Sections 3 and 4. The technical detail for how
this is achieved with minimal proof effort is in Section 5.3.

2.3 Jordan Curve Theorem
The Jordan curve theorem is formalized in Isabelle/HOL for
the complex plane since it is mostly used in the complex anal-
ysis libraries. The real plane is more natural for the setting of
the Poincaré-Bendixson theorem. In our formalization, the
real plane is represented, as generally as possible, with a type
’a under the type class constraint ’a::euclidean_space and
a dimension assumption DIM(’a) = 2. This way, depending
on the application, ’a can be instantiated, e.g., with pairs of
real numbers (real*real), 2-vectors of real numbers (realˆ2),
or complex numbers (complex). The following version of the
Jordan curve theorem for the real plane is proved straight-
forwardly from the existing Jordan curve theorem using the
obvious bijection to the complex numbers:
lemma Jordan_curve_R2:
fixes c :: "real ⇒ ’a"
assumes "simple_path c" "pathfinish c = pathstart c"
obtains inside outside where
"inside ≠ {}" "open inside" "connected inside"
"outside ≠ {}" "open outside" "connected outside"
"bounded inside" "¬ bounded outside"
"inside ∩ outside = {}"
"inside ∪ outside = - path_image c"
"frontier inside = path_image c"
"frontier outside = path_image c"
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Using this theorem is heavyweight: one first needs to
construct a simple path c, i.e., a curve in the plane with no
self-crossings. Then, the conclusion yields two sets inside
and outside, with the former being the points inside the
curve and the latter being the points outside, see Fig. 5 for
a visualization. More importantly, inside and outside come
with 12 characterizing properties4 that must be tracked and
used together when working with those sets in proofs.

3 Limit Sets and Periodic Orbits
This section explains our definitions of standard concepts
in the study of dynamical systems, as well as proofs of their
key properties. Our formalization mostly follows the mathe-
matical literature except opting for the most general (or least
restrictive) definitions where possible. The contents of this
section are not restricted to the plane.

3.1 Limit Sets
Intuitively, the 𝜔-limit set of a point 𝑥 , is the set of points
that the flow from 𝑥 tends to in positive time. The𝜔-limit set
is not simply the limit lim𝑡→∞ 𝜙 (𝑥, 𝑡). As Fig. 1 shows, this
limit does not even exist for any of the colored trajectories.
Instead, the colored trajectories tend to an entire set of points,
namely, those on the red periodic orbit. We define 𝜔-limit
points (and sets) as follows:
lemma 𝜔_limit_point_def: "𝜔_limit_point x p ←→

{0..} ⊆ existence_ivl0 x ∧
(∃ s. s −−−−−→ ∞ ∧ (flow0 x ◦ s) −−−−−→ p)"

lemma 𝜔_limit_set_def:
"𝜔_limit_set x = {p. 𝜔_limit_point x p}"

Here, p is a𝜔-limit point of x if there is a sequence of times
s tending to infinity where the flow evaluated at those times
tends to p. Additionally, {0..} ⊆ existence_ivl0 x ensures
that the existence interval for x extends to ∞ so that the
sequence flow0 x ◦ s is well-defined. The definition of 𝜔-
limit sets includes 𝜔-limit points p that are on the boundary
of the domain X of the ODEs. Including these points makes
the definition as general as possible: one can explicitly ex-
clude these boundary points later, if desired. The choice of
whether to include these points depends on the application,
e.g., [25, Chap. 3.2, Def. 1] excludes them, [33, §30.V] includes
them, and for [6, Def. 1.165] there is no difference because
the domain X is assumed to be R𝑛 , which is unbounded.
Several properties of the 𝜔-limit set (further below) use

the following notion of the flow from a point x being trapped
forward in time on set K on its positive existence interval:
lemma trapped_forward_def: "trapped_forward x K ←→
(flow0 x ‘ (existence_ivl0 x ∩ {0..}) ⊆ K)"

If all points in K are trapped forward in K itself, then K is
called a positively invariant set:

4Technically, the Poincaré-Bendixson theorem does not use the fact that
inside is bounded while outside is unbounded.

lemma positively_invariant_def:
"positively_invariant K ←→

(∀x∈K. trapped_forward x K)"

The definitions (not shown here) of trapped_backward and
negatively_invariant are similar, but with respect to nega-
tive existence intervals (existence_ivl0 x ∩ {..0}) instead.

The𝜔-limit set is closed and invariant (i.e., both positively
and negatively invariant) [6, Prop. 1.167]:
lemma 𝜔_limit_set_closed: "closed (𝜔_limit_set x)"

lemma 𝜔_limit_set_invariant:
"invariant (𝜔_limit_set x)"

The𝜔-limit set for a point xwhose flow is trapped forward
in a compact set K enjoy additional properties: it is i) non-
empty, ii) a subset of K (hence itself compact), iii) connected,
and iv) the flow from points in the 𝜔-limit set exists glob-
ally [6, Prop. 1.168]. These four properties are formalized
below, where the group of assumptions xK says that the flow
from x is trapped forward in the compact set K:
lemma 𝜔_limit_set_in_compact:
assumes xK: "compact K" "K ⊆ X" "x ∈ X"
"trapped_forward x K"
shows
"𝜔_limit_set x ≠ {}"
"𝜔_limit_set x ⊆ K"
"connected (𝜔_limit_set x)"
"
∧
y. y ∈ 𝜔_limit_set x =⇒ existence_ivl0 y = UNIV"

The 𝛼-limit set of x is the set of points that the flow from
x tends to in negative time. Thanks to the symmetry in time,
𝛼-limit sets of a flow are simply 𝜔-limit sets of the time-
reversed flow. Thus, instead of reproving analogous results
for the 𝛼-limit set, we reuse the results for the 𝜔-limit set of
the reverse flow and rewrite with the equations that relate
limit sets of the reverse flow. Concretely, making the depen-
dency on the ODE f explicit as in Section 2.2.1, these are the
relevant rewriting equations:
lemma 𝜔_𝛼_limit_eq_rev:
"𝜔_limit_point(-f) x p = 𝛼_limit_pointf x p"

"𝛼_limit_point(-f) x p = 𝜔_limit_pointf x p"

"𝜔_limit_set(-f) x = 𝛼_limit_setf x"

"𝛼_limit_set(-f) x = 𝜔_limit_setf x"

3.2 Closed and Periodic Orbits
Periodic orbits are of special interest in dynamical systems
because they provide canonical examples of oscillatory be-
havior in systems. We define the slightly more general closed
orbits as those that return to the initial point in non-zero
time; periodic orbits are closed orbits where the minimal
such time (i.e., the period) is non-zero:5

lemma closed_orbit_def: "closed_orbit x ←→
(∃ T ∈ existence_ivl0 x. T ≠ 0 ∧ flow0 x T = x)"

5Technically, the word orbit usually refers to the entire set of points obtained
by flowing a point x forward and backward in time. Our definition drops this
distinction, allowing any point along this flow to be taken as a representative
of the orbit.
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lemma period_def: "period x =
Inf {T ∈ existence_ivl0 x. T > 0 ∧ flow0 x T = x}"

lemma periodic_orbit_def: "periodic_orbit x ←→
closed_orbit x ∧ period x > 0"

The degenerate case with period zero corresponds to equi-
librium points of the differential equations, i.e., points x

where the RHS evaluates to zero (f x = 0). Points x where
the RHS is non-zero f x ≠ 0 are called regular points. The
slightly more general definition of closed orbits allows us
to prove properties of both equilibria and periodic orbits si-
multaneously. For example, for closed orbits, the flow exists
globally for all times (existence_ivl0 x = UNIV) and the set
of all points reached through the flow (flow0 x ‘ UNIV) is
equal to both 𝛼- and 𝜔-limit sets:
lemma closed_orbit_limit_sets:
assumes "closed_orbit x"
shows
"existence_ivl0 x = UNIV"
"flow0 x ‘ UNIV = 𝜔_limit_set x"
"flow0 x ‘ UNIV = 𝛼_limit_set x"

Nevertheless, equilibria can be distinguished from periodic
orbits very simply. The point x is on a periodic orbit if and
only if it is regular and on a closed orbit:
lemma closed_orbit_periodic:
"periodic_orbit x ←→ closed_orbit x ∧ f x ≠ 0"

4 The Poincaré-Bendixson Theorem
For the Poincaré-Bendixson theorem, the dynamics are as-
sumed to be on the plane, i.e., ’a::euclidean_space is a vec-
tor space with dimension DIM(’a) = 2. We formalize two
versions of the theorem, in increasing generality. The first
(less general) version follows [7, Chap. 16, Thm. 2.1]:
theorem poincare_bendixson:
assumes xK: "compact K" "K ⊆ X" "x ∈ X"
"trapped_forward x K"
assumes "0 ∉ f ‘ (𝜔_limit_set x)"
obtains y where
"periodic_orbit y"
"flow0 y ‘ UNIV = 𝜔_limit_set x"

This theorem says that any point x whose flow is trapped
in a compact set K, and whose𝜔-limit set contains no equilib-
rium points must tend towards a periodic orbit. In particular,
this periodic orbit is equal to the 𝜔-limit set of x. This form
of the theorem is most commonly used in applications to
establish the existence of periodic orbits (Section 6). Indeed,
all three trajectories illustrated in Fig. 1 display the behav-
ior asserted by this theorem. The 𝜔-limit sets of all three
colored trajectories have no equilibrium points and so by
the theorem they must all tend to periodic orbits. The blue
trajectories tend towards the red periodic orbit, and the red
trajectory is itself a periodic orbit (so it tends to itself).
The second (more general) version follows [7, Chap. 16,

Thm. 3.1]. It gives a description of the possibilities in case
there are finitely many equilibrium points in K:

theorem poincare_bendixson_general:
assumes xK: "compact K" "K ⊆ X" "x ∈ X"
"trapped_forward x K"
assumes "S = {y ∈ K. f y = 0}" "finite S"
shows
"(∃ y ∈ S. 𝜔_limit_set x = {y}) ∨
(∃ y. periodic_orbit y ∧

flow0 y ‘ UNIV = 𝜔_limit_set x) ∨
(∃ P R. 𝜔_limit_set x = P ∪ R ∧

P ⊆ S ∧ 0 ∉ f ‘ R ∧ R ≠ {} ∧
(∀z ∈ R.
(∃ p1 ∈ P. 𝜔_limit_set z = {p1}) ∧
(∃ p2 ∈ P. 𝛼_limit_set z = {p2})))"

The three possibilities for the 𝜔-limit set of x, correspond-
ing to the three disjuncts respectively, are: i) it consists of
a single equilibrium point, or ii) it is a periodic orbit, or
iii) it consists of (finitely many) equilibrium points P and a
non-empty set of regular points R such that every regular
point in R tends to exactly one equilibrium point p1 ∈ P in
forward time and one p2 ∈ P in backward time; note that p1
and p2 may be the same equilibrium point. The reader is re-
ferred to [9, Figs. 1.17-1.19] for an illustration of these three
possibilities. The rest of this section focuses on the earlier
poincare_bendixson theorem since it is used as a crucial step-
ping stone in the proof of poincare_bendixson_general [7],
and most of the important lemmas are shared between both
theorems. We give an outline of the proof and then focus on
one particularly challenging step in the formalization.

4.1 Proof Outline
Our proof outline largely follows Perko [25]. The proof
makes heavy use of transversal segments. These are two-
dimensional line segments specified by two end points a,b
such that the RHS f of the differential equation along the
segment is nowhere parallel to it. Below, {a--b} is notation
for the closed line segment between points a,b, {a<--<b}
denotes the open line segment (excluding the endpoints a,b),
· is the inner product, and rot denotes the 90 degree rotation
of a (2D) vector. A transversal segment is illustrated in Fig. 2.
lemma transversal_segment_def:
"transversal_segment a b ←→

a ≠ b ∧ {a--b} ⊆ X ∧
(∀z ∈ {a--b}. f z · rot (a-b) ≠ 0)"

Proof Sketch. We begin by enumerating several key lemmas
used in the proof. The main proof is at 5○.
1○ A transversal segment always exists around any regular
point by continuity of f, see Fig. 2 for an illustration:
lemma transversal_segment_exists:
assumes "x ∈ X" "f x ≠ 0"
obtains a b where "x ∈ {a<--<b}"

"transversal_segment a b"

2○ If p is an 𝜔-limit point on a transversal segment, then, in
addition to having a sequence of times s tending to ∞ where
the flow tends to p (which is the definition of 𝜔-limit points),
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a
x

f x ≠ 0

b

Transversal segment

Figure 2.A transversal segment between points a,b contain-
ing the regular point x with f x ≠ 0. The RHS of the ODEs f
(represented by red arrows) is never parallel to the segment
(or zero) at points on the segment between a,b (inclusive).

a

b
p

δ
x

y

Flowing forward from x 
for time |τ x| < 1

Flowing backward from y 
for time |τ y| < 1

δ-ball in which τ is 
defined and continuous

Figure 3. The map 𝜏 obtained from the implicit function the-
orem flows points x,y near p onto the transversal segment.

s can be chosen so that the flow at those points also lie on
the transversal segment:
lemma 𝜔_limit_crossings:
assumes "transversal_segment a b"
assumes "𝜔_limit_point x p"
assumes "p ∈ {a<--<b}"
obtains s where
"s −−−−−→ ∞" "(flow0 x ◦ s) −−−−−→ p"
"∀n. flow0 x (s n) ∈ {a<--<b}"

We now elaborate on the formal proof of this lemma. By
definition, since p is an 𝜔-limit point there is a sequence of
times t at which the flow converges to p:
obtain t where
"t −−−−−→ ∞" "(flow0 x ◦ t) −−−−−→ p"

The idea is to modify the times t slightly, so that the
sequence still converges to p, but does so on the transversal
segment instead. The mathematical tool that enables this
slight modification is the implicit function theorem.6 When
applied to the flow of the ODE, it yields a continuous function
𝜏 whose value at a point y is the time it takes for the flow
from y to return to the transversal segment. The function
is well-defined and continuous for points in a 𝛿-ball around
p. The return time can be negative, but is bounded in norm,
see Fig. 3 for an illustration. The formal property about p
obtained from the implicit function theorem is as follows:

6This is similar to the formalization of the first return time of the Poincaré
map by Immler and Traut [21].

obtain 𝜏 𝛿

where "0 < 𝛿" "continuous_on (ball p 𝛿) 𝜏"
"𝜏 p = 0" "(

∧
y. y ∈ ball p 𝛿 =⇒ |𝜏 y| < 1)"

"(
∧
y. y ∈ ball p 𝛿 =⇒ flow0 y (𝜏 y) ∈ {a<--<b})"

The modified sequence of times s is defined by adding the
return time 𝜏 for the flow at each time in t:
define s where "s n = t n + 𝜏 (flow0 x (t n))" for n

Note that s diverges because 𝜏 is bounded in norm. Rewrit-
ing with the semi-group property of the flow yields:
have "∀n. (flow0 x o s) n =

flow0 ((flow0 x o t) n) ((𝜏 o (flow0 x o t)) n)"

From this and the facts that the flow at times t converges
to p, and 𝜏 is continuous at p, it follows that the flow at times
along the modified sequence converges to flow0 p (𝜏 p):
from ⟨(flow0 x ◦ t) −−−−−→ p⟩ and ⟨𝜏 −p→ 𝜏 p⟩

have
"(𝜆n. flow0 ((flow0 x ◦ t) n) ((𝜏 ◦ (flow0 x ◦ t)) n))
−−−−−→
flow0 p (𝜏 p)"

Moreover, the specification of the return time map 𝜏 guar-
antees that flow0 p (𝜏 p) = p and that the flow at every
time in s is on the segment, which completes the proof of 2○.
3○ Transversal segments contain at most one 𝜔-limit point.
The proof of this crucial lemma is deferred since it depends
fundamentally on the dynamical system being planar and
its proof requires the Jordan curve theorem. It also leads to
an interesting formalization challenge (Section 4.2).
lemma unique_transversal_segment_intersection:
assumes "transversal_segment a b"
assumes "u ∈ 𝜔_limit_set x ∩ {a<--<b}"
shows "𝜔_limit_set x ∩ {a<--<b} = {u}"

4○ If the𝜔-limit set contains a periodic orbit, then it is equal
to the periodic orbit. The proof of this step is technical and
can be found in the cited textbooks. It uses 3○ and connect-
edness of the 𝜔-limit set.
lemma periodic_imp_𝜔_limit_set:
assumes xK: "compact K" "K ⊆ X" "x ∈ X"
"trapped_forward x K"
assumes "periodic_orbit y"
assumes "flow0 y ‘ UNIV ⊆ 𝜔_limit_set x"
shows "flow0 y ‘ UNIV = 𝜔_limit_set x"

5○ The proof of poincare_bendixson is straightforward
using lemmas 1○– 4○. Let y be a point in the 𝜔-limit set of
x and consider a point z in the 𝜔-limit set of y. Note that z
is also in the 𝜔-limit set of x by invariance (and closure) of
the 𝜔-limit set. By assumption, both y,z are regular points.
By 1○, there is a transversal segment through z. By 2○, since
z is on the transversal segment and in the 𝜔-limit set of y,
there is a sequence of times s such that the flow from y at
those times tends to z and is also on the transversal segment.
Pick any two distinct times t1,t2 in s; the flow at these times
(call them x1,x2) are both in the𝜔-limit set of x. By 3○, x1,x2
must be identical points, which implies that the flow from y
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Figure 4. The (impossible) situation with two distinct 𝜔-
limit points u,v on the transversal segment.

is a periodic orbit. By 4○, since y is a periodic orbit contained
in the 𝜔-limit set of x, it is equal to the 𝜔-limit set of x. □

Returning to the proof of 3○, suppose for contradiction
that there are are two distinct 𝜔-limit points u,v on the
transversal segment. By 2○, pick three times along the flow
t1 < t2 < t3 such that the flow lies on the transversal segment
at those times. Respectively denote the flow at these time as
x1,x2,x3. The times can be chosen such that x1,x3 are close
to u, while x2 is close to v. A configuration of these points
along the transversal segment is illustrated in Fig. 4.

However, for planar systems, the points x1,x2,x3 must be
arranged monotonically in the order of the segment because
of the upcoming monotonicity lemma in Section 4.2. Hence,
the situation described above is impossible, contradiction.

4.2 The Monotonicity Lemma
This monotonicity property is fundamental to the plane and
its proof requires the Jordan curve theorem. We present both
a textbook proof sketch and our formalized argument in
order to highlight the important differences.

4.2.1 A Textbook Proof
The following is a brief textbook statement and proof sketch
of the monotonicity lemma.

Lemma 4.1 (Monotonicity of intersections [7, 9, 25]). If the
flow on a closed time interval intersects a transversal segment,
then it does so in a finite number of points. These intersections
are monotonic in the order of the transversal segment.

Proof Sketch. First, by standard analytic arguments, there
can only be a finite number 𝑛 of times where the image of
the flow from a point on a closed time interval intersects the
transversal segment [7, 9, 25] (see Section 5.5). Order these
times 𝑡1 < 𝑡2 < · · · < 𝑡𝑛 , and refer to their respective inter-
section points with the transversal segment as 𝑥1, 𝑥2, . . . , 𝑥𝑛 .
Consider the first two successive intersections 𝑥1, 𝑥2 at times
𝑡1, 𝑡2. Without loss of generality, assume that 𝑥1 < 𝑥2 accord-
ing to the order of the transversal segment. This situation
is sketched in Fig. 5, where the blue curve represents the
flow and the black line between 𝑎, 𝑏 is a transversal segment.
Along this transversal segment, the flow must cross at 𝑥1, 𝑥2
(and also at subsequent intersections, e.g., 𝑥3) in the same
direction; this is illustrated by the red directional arrows.

Since the flow does not intersect with the transversal seg-
ment between times 𝑡1, 𝑡2, the (dashed green) curve formed
by the flow between these times and the line segment be-
tween 𝑥1, 𝑥2 forms a Jordan curve 𝐽 . From the Jordan curve
theorem, 𝐽 divides the plane into an inside (𝐼 , shaded and
striped green) and outside (𝑂 , unshaded). From Fig. 5, two
cases are possible, depending on the flow. In case A○, the flow
at times 𝑡 > 𝑡2 locally lies in 𝐼 while in case B○ it lies locally
in 𝑂 . In fact, in case A○ (resp. B○), the flow must remain in 𝐼

(resp.𝑂) for all times 𝑡 > 𝑡2 because it cannot touch or cross
the Jordan curve 𝐽 by construction. Therefore, any further
intersections at time 𝑡3 > 𝑡2 must occur at a point 𝑥3 which
is beyond 𝑥2 according to the order of the segment.
This argument extends by induction to the ordered list

of times 𝑡1 < 𝑡2 < · · · < 𝑡𝑛 , and therefore the intersections
𝑥1, 𝑥2, . . . 𝑥𝑛 are ordered monotonically in the same order as
𝑥1 < 𝑥2 along the transversal segment. □

Formalizing this proof sketch is challenging for two pri-
mary reasons. First, textbook proofs (rightfully) elide several
symmetric cases, e.g., assuming without loss of generality
that 𝑥1 < 𝑥2 (and 𝑡1 < 𝑡2), and handling only one of the A○
and B○ cases arising from the Jordan curve theorem.7 Second,
the sketches in Fig. 5 may be convincing to a human reader,
but less so for a skeptical proof assistant. Our proof proceeds
similarly in two steps, first proving the case of two successive
intersections, before extending to the general case.

4.2.2 A Formal Proof (Successive Intersections)
Applying the Jordan curve theorem is heavyweight and it
is desirable to isolate its usage to a single lemma, obtaining
other required cases by symmetry. Our main lemma for suc-
cessive intersections formalizes the particular case described
in the proof sketch above. Formally:
lemma flow0_transversal_segment_monotone_step:
assumes "transversal_segment a b"
assumes "t1 ≤ t2" "{t1..t2} ⊆ existence_ivl0 x"
assumes x1: "flow0 x t1 ∈ {a<--<b}"
assumes x2: "flow0 x t2 ∈ {flow0 x t1<--<b}"
assumes "

∧
t. t ∈ {t1<..<t2} =⇒ flow0 x t ∉ {a<--<b}"

assumes "t > t2" "t ∈ existence_ivl0 x"
shows "flow0 x t ∉ {a<--<flow0 x t2}"

The assumptions x1,x2 say the flow from x at times t1,t2
are on the transversal segment, and that flow0 x t2 is after
flow0 x t1 according to the order of the transversal segment.
For brevity, we refer to flow0 x t1 as x1 and flow0 x t2 as x2
from now on. The assumption∧

t. t ∈ {t1<..<t2} =⇒ . . .

says that no other transversal segment intersections occur
between times t1,t2. Following convention, the subscripts
𝑡1, 𝑡2, 𝑥1, 𝑥2 are typeset as t1,t2,x1,x2 throughout.

The primary departure in our formalization of this lemma
from standard textbook proofs lies after the construction of

7In fact, several textbook arguments omit (without even mentioning the
possibility of) one of the cases.
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Case A○: flow remains inside 𝐽 for times 𝑡 > 𝑡2.
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Case B○: flow remains outside 𝐽 for times 𝑡 > 𝑡2.

Figure 5. A sketch of the two cases that arise from applying the Jordan curve theorem. Note that the Jordan curve (in dashed
green) is slightly offset for clarity in the illustration. It should lie exactly on the blue curve and line segment between 𝑥1, 𝑥2.
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Figure 6. The three pieces of information that must be es-
tablished simultaneously for case A○.

the Jordan curve J. Here, we must show that the two cases A○
and B○ depicted in Fig. 5 are, in fact, the only ones that can
occur. The difficulty is that the proof must simultaneously
establish three pieces of information in the two cases8:

1. At points along the segment from x1 to x2, for A○, the
(local) flow from those points crosses from the outside
O to the inside I. For B○, they cross from I to O.

2. The segment from a to x1 is, for A○, entirely in O. For
B○, it lies entirely in I.

3. For all times t > t2 the flow from x, for A○, is (locally)
in I. For B○, the flow is in O.

An illustration of the three pieces of information for case
A○ is shown in Fig. 6. We now sketch our construction that
establishes these three pieces of information rigorously and
that is amenable to formalization. This construction is of
wider interest since it is, to the best of our knowledge, new.

8Equivalently, it must establish that no other combination of facts are
possible, e.g., having the flow after t > t2 locally in Iwhile simultaneously
having the segment from a to x1 lie in I.

Proof Sketch. The proof simultaneously establishes all three
pieces of information by what we call a flow region construc-
tion. The key analytic step behind this construction is to
find a lower bound T > 0 for which the flow from points
on the transversal segment at time 0 cannot return to the
segment in positive 0 < s ≤ T (or in negative -T ≤ s < 0)
time. Geometrically, rot n is a normal vector pointing in the
same direction as the flow along the transversal segment, so
that (y - x) · rot n > 0 is true for points y that are “above”
the transversal segment and (y - x) · rot n < 0 is true for
points that are “below” it:

lemma leaves_transversal_segmentE:
assumes transversal: "transversal_segment a b"
obtains T n where "T > 0" "n = a - b ∨ n = b - a"
"
∧
x. x ∈ {a -- b} =⇒ {-T..T} ⊆ existence_ivl0 x"

"
∧
x s. x ∈ {a -- b} =⇒ 0 < s =⇒ s ≤ T =⇒
(flow0 x s - x) · rot n > 0"

"
∧
x s. x ∈ {a -- b} =⇒ -T ≤ s =⇒ s < 0 =⇒
(flow0 x s - x) · rot n < 0"

This analytic lemma is proved using the compactness of
the transversal segment. The normal vector rot n is used to
factor handling of symmetric cases into the handling of the
disjunction n = a - b ∨ n = b - a.

The first region r1 is constructed by locally flowing points
on the open segment between x1 to b forward for an open
time interval (0,s) with 0 < s ≤ T. The second region r2 is
constructed by similarly locally flowing the open segment
between a to x2 backward. The resulting (open) flow regions
are illustrated for case A○ in Fig. 7. Using the time bound T,
both regions r1,r2 are chosen so that they do not intersect
with the Jordan curve J. Moreover, these regions are (path)
connected by construction. Thus, if there is a point in r1 that
is contained in I (resp. in O), then all of r1 is in contained I

(resp. in O). The same is true for region r2.
The regions r1,r2 must (entirely) lie on opposite sides of

J. This is shown by considering a point p between x1 and
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Figure 7. The constructed flow regions r1,r2 for case A○.
Note that r1 is entirely inside, while r2 is entirely outside J.

a

x1

b

Jordan curve 
(J)Outside

(O)
Inside

(I) r1

r2

p

Bisected ball centered at p

x2

Figure 8. The bisected ball centered at p for case A○.

x2 on the transversal segment. By construction, the forward
flow from p is locally in r1, and the backward flow from p is
locally in r2. Since p lies on the transversal segment and also
in J, the Jordan curve bisects a small ball centered around
p, such that one half of the ball is inside while the other is
outside of J, see Fig. 8. Thus, the forward and backward flow
from p must also locally lie on opposite sides of J. By path
connectedness, regions r1,r2 lie on opposite sides of J.

For the rest of this sketch, we consider the case where r1

is entirely in I, while r2 is in O. This corresponds to case A○
as illustrated in Figures 7 and 8. The three properties can
now be established simultaneously by analyzing the regions:

1. The forward (resp. backward) flow from points along
the segment from x1 to x2 is locally in r1 (resp. r2).
Hence, the flow crosses along this segment from the
outside to the inside.

2. The segment from a to x1 consists entirely of limit
points of r2 so it lies in the closure of O. In fact, it lies
entirely in O since it does not intersect O’s boundary J.

3. For time t > t2 the flow locally lies in r1, and thus
also locally in I. The flow stays in I for all t > t2 by
construction because it cannot intersect J. □

The monotonicity lemma required ≈760 lines of proof, not
counting any sub-lemmas but including construction of the
Jordan curve J and the flow regions r1,r2. Fortunately, sub-
sequent proof steps can exploit symmetries in the problem.
For example:
lemma flow0_transversal_segment_monotone_step_rev:
assumes "transversal_segment a b"
assumes "t1 ≤ t2" "{t1..t2} ⊆ existence_ivl0 x"
assumes x1: "flow0 x t1 ∈ {a<--<b}"
assumes x2: "flow0 x t2 ∈ {a<--<flow0 x t1}"
assumes "

∧
t. t ∈ {t1<..<t2} =⇒ flow0 x t ∉ {a<--<b}"

assumes "t < t1" "t ∈ existence_ivl0 x"
shows "flow0 x t ∉ {a<--<flow0 x t1}"

This lemma utilizes two symmetries. First, the relative
order of intersection at times t1,t2 with the transversal
segment is exchanged. Secondly, it draws a conclusion about
the possible intersection at times t < t1 instead of t > t2.
Both symmetries exploit time reversal (Section 2.2.1). The
former symmetry also uses the fact that transversal segments
can be oriented in reverse. Together the proof of this lemma
requires merely ≈30 lines of mostly boilerplate steps.

4.2.3 A Formal Proof (General Case)
The general case lemma is essentially identical except drop-
ping the successive intersections assumption:
lemma flow0_transversal_segment_monotone:
assumes "transversal_segment a b"
assumes "t1 ≤ t2" "{t1..t2} ⊆ existence_ivl0 x"
assumes x1: "flow0 x t1 ∈ {a<--<b}"
assumes x2: "flow0 x t2 ∈ {flow0 x t1<--<b}"
assumes "t > t2" "t ∈ existence_ivl0 x"
shows "flow0 x t ∉ {a<--<flow0 x t2}"

Our formalization is similar to the textbook sketch. Like
the textbook sketch, it uses a lemma (described in more de-
tail in Section 5.5) showing that the number of intersections
of the flow from x between times t1,t2 and the transversal
segment is finite. However, our proof avoids setting up a
(tricky) induction. Briefly, by finiteness, there exists a maxi-
mum time t with t1 ≤ t < t2 that is the last intersection
time of the flow with the transversal segment before t2. By
construction, there are no crossings between times t,t2. Let
y,x1,x2 be the points of intersection at times t,t1,t2 of the
flow with the transversal segment respectively. Firstly, note
that y ≠ x2, otherwise the flow between t to t2 is periodic
and does not contain x1, contradiction. If y < x2 according to
the order of the transversal segment, then the conclusion fol-
lows by flow0_transversal_segment_monotone_step directly.
Conversely, the case for y > x2 is contradictory because
then flow0_transversal_segment_monotone_step_rev would
imply x1 > y, contradicting x1 < x2.

5 Formalization Techniques
In this section, we present, and reflect upon, certain design
decisions in our formalization. These decisions helped to
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keep the formalization in a maintainable state, i.e., without
unnecessary duplication of code and with theorems phrased
in the most canonical way. This is in order to make our for-
malization a library that can be used for developments going
beyond just the proof of the Poincaré-Bendixson theorem.

We motivate the use of filters in general (Section 5.1) and
show an application of filters to a recurring reasoning princi-
ple in dynamical systems (Section 5.2). We also explain how
reasoning for symmetries in time is managed (Section 5.3),
along with one approach to essentially changing coordinates
in proofs (Section 5.4). Finally, we show examples of more
general theorems formalized along the way that are not spe-
cific to the plane (Section 5.5).

5.1 Background: Filters
The HOL-Analysis libraries in Isabelle/HOLmake heavy use
of filters [15]. Filters are generalized quantifiers: a filter F is
a predicate on predicates F : (’a → bool) → bool. Filter
F applied to a predicate P is written as ∀F x in F . P x

instead of F P to hint at their intuitive reading as generalized
quantifiers. For F to be a filter, it must satisfy the following
properties (observe that an ordinary ∀-quantifier satisfies
similar properties): it holds for the always true predicate
and preserves conjunction as well as monotonicity.
lemma filter_properties:
"(∀ 𝐹 x in F . True)" and
"(∀ 𝐹 x in F . P x) −→ (∀ 𝐹 x in F . Q x) −→

(∀ 𝐹 x in F . P x ∧ Q x)" and
"(∀x. P x −→ Q x) −→ (∀ 𝐹 x in F . P x) −→

(∀ 𝐹 x in F . Q x)"

Thus, properties that hold under a filter can be combined in
a modular way, according to conjunction and monotonicity.
For the dual one writes ∃F x in F . P x.
lemma frequently:
"(∃ 𝐹 x in F . P x) ←→ ¬(∀ 𝐹 x in F . ¬ P x)"

For a detailed motivation and discussion of the role of
filters in Isabelle/HOL we refer the reader to Hölzl et al. [15].

5.2 Frequent Choice
Recall from Section 3.1 that 𝛼- and 𝜔-limit points and sets
are defined in terms of (sub-)sequences, e.g, 𝜔-limit points
are witnessed by a sequence of times (tending to infinity),
where the flow at those times tends to the 𝜔-limit point.

Our formalization therefore requires a substantial amount
of reasoning about (sub)sequences, mandating good reason-
ing infrastructure for them. In the spirit of HOL-Analysis,
we use filters to make reasoning about such sequences as
convenient and natural as possible.

A generalization of the introduction rule for𝜔-limit points
can be stated with a binary predicate on natural and real
numbers P : nat → real → bool. For the 𝜔-limit point
example, instantiate P n t with the predicate that denotes
whether the flow at time t is 1/n close to the 𝜔-limit point in

question. For an 𝜔-limit point, P satisfies the property that
for all n and t0 one is able to choose a time t > t0 such that
P n t is true. More generally, under this assumption on P,
one can choose a sequence of times s diverging to infinity
such that P i (s i) is true for all elements of the sequence:
lemma frequently_at_top_elementary:
fixes P::"nat ⇒ real ⇒ bool"
assumes "∀n. ∀t0. ∃ t>t0. P n t"
obtains s::"nat ⇒ real"
where "∀i. P i (s i)" "∀t. ∃ N. ∀n≥N. s n ≥ t"

The proof of this lemma is not an issue for Isabelle/HOL:
it is an easy application of the principle of dependent choice
(an inductive application of the axiom of choice). Rather,
we are concerned with trying to use the lemma. It contains
alternating quantifiers in both assumption and conclusion,
which makes reasoning tedious and cumbersome.

Filters provide an abstraction over the quantifier alterna-
tions. First, (part of) the assumption can be rewritten with
the at_top filter, abstracting away one quantifier alternation:
lemma frequently_at_top:
"(∃ 𝐹 t in at_top. P t) ←→ (∀t0. ∃ t>t0. P t)"

Second, the conclusion that the chosen sequence tends to
infinity can be expressedmore idiomatically and abstractly as
a generalized limit. Recalling from Section 2.1, this removes
another three quantifiers:
lemma filterlim_at_top_sequentially:
"(s −−−−−→ ∞) ←→ (∀t. ∃ N. ∀n≥N. s n ≥ t)"

Combining these steps, a more idiomatic way of writing
the frequently_at_top_elementary lemma is:
lemma frequently_at_top_realE:
fixes P::"nat ⇒ real ⇒ bool"
assumes "∀n. ∃ 𝐹 t in at_top. P n t"
obtains s::"nat ⇒ real"
where "

∧
i. P i (s i)" "s −−−−−→ ∞"

This is just a reformulation of the elementary lemma (its
proof is no more difficult) — but did we actually gain some-
thing from using filters? Yes indeed: the assumption of this
new lemma is easier to establish and the conclusions are eas-
ier to continue reasoning with. For example, Isabelle/HOL’s
library contains many more lemmas to reason about the
limit in the conclusion than about the specific combination
of quantifiers. Moreover, filters can be combined directly, e.g,
according to the following lemma.
lemma frequently_mp:
"(∀ 𝐹 x in F . P x −→ Q x) −→ (∃ 𝐹 x in F . P x) −→
(∃ 𝐹 x in F . Q x)"

This avoids the need to explicitly combine witnesses for
the existential quantifiers behind, e.g., the at_top filter.

5.3 Reasoning Backward In Time
In the study of dynamical systems, many symmetries arise be-
cause the dynamics can be studied for forward or backward
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time. Often, a symmetric case can be reduced to a known
case by considering backward time, e.g., in Section 4.2.2.

This general idea was introduced in Section 2.2.1: the flow
of an ODE is the same as the flow in backward time for the
negated ODE. However, it is a technical challenge to actually
exploit such symmetries and reuse results about forward
time for backward time with as little additional proof effort
or code duplication as possible. Our approach to exploiting
the forward and backward symmetry in time is to make use
of Isabelle/HOL’s locale system [2] for modular reasoning.
A locale can be understood as a collection of theorems

parameterized by a set of assumptions over them. The con-
text in which we reason about ODEs, c1_on_open f f’ X, is
an example of a locale. Within a locale, one can introduce
sublocale relationships which augments the current locale
context with theorems from another locale. In our case, we
introduce a sublocale relationship for the reverse ODE -f:
context c1_on_open f f’ X begin
sublocale rev: c1_on_open -f -f’ X

This makes all theorems and definitions of the c1_on_open
sublocale available (with a name prefix rev) for the reverse
ODE. Now all theorems about the regular flow flow0 as well
as the flow for the reverse ODE rev.flow0 are accessible.
In the notation of Section 2.2.1, rev.flow0 corresponds to
flow0(-f). This allows us to (easily) prove, once-and-for-
all, rules relating the flow, existence interval, transversal
segment, and limit points for forward and backward time:
lemma rev_locale_properties:
"rev.flow0 y t = flow0 y (-t)"
"t ∈ rev.existence_ivl0 y ←→ -t ∈ existence_ivl0 y"
"rev.transversal_segment = transversal_segment"
"rev.𝜔_limit_point = 𝛼_limit_point"

As an example application, the time-reversed version of
lemma 𝜔_limit_crossings from 2○ in Section 4.1 that is au-
tomatically generated in the rev sublocale is the following:
lemma 𝛼_limit_crossings_raw:
assumes "rev.transversal_segment a b"
assumes "rev.𝜔_limit_point x p"
assumes "p ∈ {a<--<b}"
obtains s where
"s −−−−−→ ∞" "(rev.flow0 x ◦ s) −−−−−→ p"
"∀n. rev.flow0 x (s n) ∈ {a<--<b}"

Rewriting time reversed concepts to their original coun-
terparts yields the corresponding lemma for 𝛼-limit points:
lemma 𝛼_limit_crossings:
assumes "transversal_segment a b"
assumes "𝛼_limit_point x p"
assumes "p ∈ {a<--<b}"
obtains s where
"s −−−−−→ -∞" "(flow0 x ◦ s) −−−−−→ p"
"∀n. flow0 x (s n) ∈ {a<--<b}"

Notably, this lemma is obtained by simple rewriting, hence
achieving the goal of avoiding duplicate proofs for time sym-
metric lemmas.

5.4 Line Segments
Proper abstraction is the key to properly engineered proofs
and mathematics. But one must be careful not to abstract
away too much information that must otherwise be recov-
ered tediously. Our example for this is line segments, defined
as the set of convex combinations of the endpoints.
lemma closed_segment_def: "{a--b} =

{(1 - u) *𝑅 a + u *𝑅 b | u::real. 0 ≤ u ∧ u ≤ 1}"

This representation as a set hides information that would
have been intuitively useful when reasoning about segments:
namely that the points on the segment can be ordered. In
our formalization (Section 4), the fact that two points x and y

are ordered on the line segment {a--b} such that x is closer
to a is expressed like so (with <–< instead of – if x ≠ y):
assume "x ∈ {a--b}" "y ∈ {x--b}"

This correctly expresses the ordering, but reasoning with
it is hard: essentially all proofs about it required expanding
definitions down to reasoning about the convex combina-
tions making up the line segments. This often made our
proofs about orderings on line segments very tedious.

We therefore introduced a layer of abstraction between the
set {a--b} and its underlying convex combinations. Namely,
we introduce {a--b}u and parameterize the (whole) line
through a and b with a real number u.
lemma line_def: "{a--b}u = a + u *𝑅 (b - a)"

The parameterization is chosen such that the line segment
between a and b is the image of the unit interval. Note that
line and theorems about it can be reused for different kinds
of segments: (half) open line segments can simply be repre-
sented as the image of line of (half) open (unit) intervals.
lemma closed_segment_line: "{a--b} = {a--b}‘{0..1}"

lemma open_segment_line:
"a ≠ b =⇒ {a<--<b} = {a--b}‘{0<..<1}"

With this notion of line, a better way to express the or-
dering of x and y is by directly referring to the order on the
underlying unit interval:
assume "x = {a--b}i" "y = {a--b}j"

"0 ≤ i ∧ i ≤ j ∧ j ≤ 1"

The more abstract notion of membership in line segments
x ∈ {a--b} is used in lemma statements. As a first step in
proofs, we change coordinates by obtaining the parameter i
on the unit interval such that x = {a--b}i. After that, rea-
soning about the order on segments is reduced to reasoning
about the order on the unit interval. There Isabelle/HOL’s
arithmetic tactics apply with ease and have simplified many
previously cumbersome proofs about the order of points on
open, closed, and combinations of open and closed segments.

5.5 Generalizations
To promote reuse of the formalization, we formalized all re-
sults as generally as possible. For example, this is the (planar)
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lemma that in finite time, the flow can intersect a transversal
segment (a line segment in R2) only finitely many times:
lemma flow_transversal_segment_finite_intersections:
assumes "transversal_segment a b"
assumes "t1 ≤ t2" "{t1..t2} ⊆ existence_ivl0 x"
shows "finite {s ∈ {t1..t2}. flow0 x s ∈ {a--b}}"

This theorem is actually true (and proved) in a much more
general setting: a flow inR𝑛 intersects a differentiable surface
(represented as the intersection of a closed set S and the
zeroes of a differentiable function s) only finitely many times:
lemma flow_transversal_surface_finite_intersections:
fixes s::"’a ⇒ ’b::real_normed_vector"
and Ds::"’a ⇒ ’a ⇒𝐿 ’b"
assumes "closed S"
assumes "

∧
x. (s has_derivative (Ds x)) (at x)"

assumes "
∧
x. x ∈ S =⇒ s x = 0 =⇒ Ds x (f x) ≠ 0"

assumes "t1 ≤ t2" "{t1..t2} ⊆ existence_ivl0 x"
shows
"finite {t ∈ {t1..t2}. flow0 x t ∈ {x ∈ S. s x = 0}}"

The formalization of limit sets and periodic orbits (Sec-
tion 3.1) was also done in a more general setting. It is formal-
ized in the locale of locally Lipschitz continuous RHS for the
ODE in finite dimensional vector spaces, rather than just for
continuously differentiable RHS on the Euclidean plane.

6 Existence of Limit Cycles
This section uses the Poincaré-Bendixson theorem to for-
malize the existence of limit cycles on two examples. A limit
cycle is a periodic orbit that is the 𝛼- or 𝜔-limit set of a point
not already contained in the cycle [6].9 Formally:
lemma limit_cycle_def: "limit_cycle y ←→

periodic_orbit y ∧
(∃ x. x ∉ flow0 y ‘ UNIV ∧
(flow0 y ‘ UNIV = 𝜔_limit_set x ∨

flow0 y ‘ UNIV = 𝛼_limit_set x))"

The existence of limit cycles can be established using the
following corollary of poincare_bendixson:
corollary poincare_bendixson_limit_cycle:
assumes "compact K" "K ⊆ X" "0 ∉ f ‘ K"
assumes "positively_invariant K"
assumes "x ∈ K"
assumes "t ∈ existence_ivl0 x ∩ {..0}"
assumes "flow0 x t ∉ K"
obtains y where
"limit_cycle y"
"flow0 y ‘ UNIV ⊆ K"

The proof of this corollary closely follows how it is used.
To use the corollary, one supplies a set K and a point x. The
(positively) invariant compact set K acts as a trapping region
because its (positive) invariance guarantees that the flow
forward from any point in K, including x, is trapped forward

9Readers may be familiar with the less general definition of limit cycles as
isolated periodic orbits, see [6, Def. 1.178].

in K. From these properties of K, poincare_bendixson guar-
antees that the 𝜔-limit set of x is a periodic orbit (from a
point y) that is contained within K.

The last two assumptions, t ∈ existence_ivl0 x ∩ {..0}

and flow0 x t ∉ K say that x can be flowed backward for
some time t in its negative existence interval to exit K. This
guarantees that x is not in the periodic orbit from y because
the periodic orbit is trapped for forward and backward time
in K. Thus, the periodic orbit from y is a limit cycle. These
last two assumptions are stated differently compared to the
literature [6, Thm. 1.179]. They enable the use of verified
ODE reachability analysis [17] in the examples below.

6.1 Circle Example
The main ideas are first illustrated on a textbook example [6,
Chap. 1.9] visualized in Fig. 9 (Left), where the limit cycle
is the unit circle. The prefix c below (e.g., c.flow0) refers to
the locale instance for this example. The (compact) annular
trapping region cK is chosen to be the set of points between
the circles of radius 2 and radius 1

2
. This choice of cK excludes

the equilibrium point at the origin and satisfies 0 ∉ f ’ cK.
The main challenge is proving positively_invariant cK.

From Fig. 9, this is intuitively true because the arrows always
point “inwards” on the boundary of cK. To prove this, we
formalized a comparison principle [33, §9.IX] and, as corol-
laries, variations of barrier certificate principles [31] that can
be used to establish (positive) invariance. Technical details
of this formalization are omitted as it is not the focus of this
paper. The use of these principles reduces invariance to (real)
arithmetic goals, which are discharged using Isabelle/HOL’s
builtin linear and sum-of-squares arithmetic.

For example, to show positive invariance for cK, one step
in the proof is to show that the outer disc of radius 2 is
positively invariant:

lemma positively_invariant_outer:
"c.positively_invariant (cball (0, 0) 2)"

An application of the barrier certificate principle reduces
this to a question of real arithmetic that is solved automati-
cally by the sum-of-squares proof method sos:

lemma c_arith:
"2 * (-y + x * (1 - x2 - y2)) * x +
2 * ( x + y * (1 - x2 - y2)) * y
≤ (-(2 * x2) - 2 * y2) * (x2 + y2 - 4)"

The point x is chosen to be (2,0), and Isabelle/HOL’s ver-
ified ODE reachability analysis [17] tool is used to compute
bounds on the backward flow from x. For time t=-0.01, the
flow is proved to lie in an enclosing box:

lemma c_reachable:
"-0.01 ∈ c.existence_ivl0 (2, 0)"
"c.flow0 (2, 0) (-0.01) ∈

{(2.06,-0.021)..(2.07,-0.02)}"
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(Right) ¤𝑥 = −𝑥 + 0.08𝑦 + 𝑥2𝑦, ¤𝑦 = 0.6 − 0.08𝑦 − 𝑥2𝑦

Figure 9. The compact trapping region K (in shaded red) together with initial point x (in blue) whose 𝜔-limit set is a limit
cycle, respectively for the circle example (Left) and the glycolysis example (Right). The trapping region boundaries are drawn
in solid red. For the glycolysis example (Right), the wavy red boundary indicates a truncated plot of the trapping region.

The box {(2.06,-0.021)..(2.07,-0.02)} is bounded away
from cK, so applying poincare_bendixson_limit_cycle yields
the existence of a limit cycle for this example:

theorem c_has_limit_cycle:
obtains y where
"c.limit_cycle y" "c.flow0 y ‘ UNIV ⊆ cK"

6.2 Glycolysis Example
For the second example, we show that a limit cycle exists
for Sel’kov’s model of glycolysis for the parameter values
𝑎 = 0.08 and 𝑏 = 0.6 [30, 32] (see Fig. 1). The proof largely
follows the same ideas as the textbook example above and
the prefix g is used below to refer to the locale instance
for this example. The trapping region gK and point x are
visualized in Fig. 9 (Right). The most involved part of this ex-
ample is the construction of the trapping region and proving
its positive invariance. We mostly follow the construction
in [32, Example 7.3.2], except for the inner excluded region,
see Fig. 9, which is described by the degree 4 polynomial p1
below found using sum-of-squares programming:

lemma p1_def:
"p1 (x, y) = -21/34 - 69*x/38 + 19*x^2/15 -

9*x^3/28 - 6*x^4/43 + 14*y/29 + 31*x*y/21 +
182*x^2*y/47 - 35*x^3*y/16 - 3*y^2/17 -
2*x*y^2/9 - 31*x^2*y^2/20 + y^3/102 + x*y^3/59"

Proving the required properties for gK is complicated by
the presence of p1 in its description. Here, the assumptions
compact gK and 0 ∉ f ’ gK are discharged by linear and sum-
of-squares arithmetic. However, proving positive invariance
for gK results in the following difficult real arithmetic goal

(related to p1), where p1’ (x, y) is the total derivative (more
precisely, the Jacobian) of p1 at (x, y):
lemma g_arith:
"(- (27 / 25) - x2 + 2 * x * y) * p1 (x, y) -
p1’ (x, y) (-x + 0.08 * y + x2 * y,

0.6 - 0.08 * y - x2 * y) ≥ 0"
if xb: "0 ≤ x" "x ≤ 8.24" and yb: "0 ≤ y" "y ≤ 7.51"

This problem is too challenging for Isabelle/HOL’s sum-of-
squares solver: even after 5 minutes, it does not return with a
solution. Fortunately, the compactness of the bounds (xb,yb)
allows us to prove the arithmetic goal numerically using
affine arithmetic [16] and a branch-and-bound technique.

The final theorem (some proof steps omitted) shows that
a limit cycle exists within the trapping region gK, and thus
that Sel’kov’s model exhibits limiting periodic behavior:
theorem g_has_limit_cycle:
obtains y where
"g.limit_cycle y" "g.flow0 y ‘ UNIV ⊆ gK"

We note that Sel’kov’s model actually exhibits limit cycles
for all parameter values 𝑎, 𝑏 that satisfy a particular relation-
ship [32, Example 7.3.3]. The use of concrete parameters 𝑎, 𝑏
in this example is to illustrate our approach, including the
use of verified ODE reachability analysis and various forms
of real arithmetic proofs in Isabelle/HOL.

7 Related Work
The Poincaré-Bendixson theorem has a rich history and is
reported in several standard textbooks in ordinary differen-
tial equations and dynamical systems [6, 7, 9, 25, 28, 33, 34].
We are not aware of any other existing (or ongoing) effort
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in formalizing this theorem. The Jordan curve theorem was
formalized by Hales [12] and independently by Harrison [13]
in HOL light. Harrison’s proof was ported to Isabelle/HOL
by Paulson and subsequently used in our work. Some other
porting efforts by Paulson are briefly mentioned in a dif-
ferent context [1]. The library for analysis in Isabelle/HOL,
HOL-Analysis, has its origins in a formalization of nonstan-
dard real analysis by Fleuriot and Paulson [10], and a for-
malization of multivariate analysis by Harrison [13] in HOL
Light. Hölzl et al. [15] describe how the formalization was
developed further to profit from Isabelle/HOL’s type class
system and center the treatment of limits around filters.

Our formalization builds substantially on Immler et al. [18,
19, 21]’s formalization of ordinary differential equations in
Isabelle/HOL. This library has also been used to formalize rea-
soning for hybrid systems (and hybrid games) [5, 11, 26, 35]
that combine discrete, adversarial, and continuous dynam-
ics, the latter of which is specified by ordinary differential
equations. Whereas our formalization focuses on dynamical
systems theory, some of the results, e.g., 𝜔-limit sets could
be of useful in formalizing reasoning principles relevant to
the study of hybrid systems.
Cohen and Rouhling [8] formalized LaSalle’s invariance

principle in the Coq proof assistant. This formalization was
later used by Rouhling to formalize the correctness of a con-
troller for the inverted pendulum [29]. LaSalle’s principle
uses properties of the 𝜔-limit set; all of the required proper-
ties have been formalized in our work (Section 3). The most
notable difference between our formalization and theirs is
the hypothesis: Cohen and Rouhling [8] hypothesize the
global existence of a solution to the differential equations,
which obviates the need to manage any kind of existence
reasoning for solutions. In contrast, ours builds on the true
solution obtained via Picard iteration [18, 21] — solutions of
differential equations do not, in general, exist globally but
only on an open existence interval [6]. The solution obtained
by Picard iteration is also formalized in Coq by Makarov and
Spitters [22] in a constructive setting.

8 Conclusion and Future Work
The Poincaré-Bendixson theorem serves as an interesting
watershed for the maturity of a proof assistant’s mathemat-
ical analysis libraries. It also provides a challenging case
study involving the formalization of (seemingly) straightfor-
ward geometric arguments. Although our formalization of
the theorem is in Isabelle/HOL, we believe that our proof,
especially the flow region construction from Section 4.2, can
be used as a blueprint in any other proof assistant with the
requisite analysis libraries. On the other hand, our formaliza-
tion directly reasons about the given differential equations.
In some textbook proofs [6, 9], the rectification theorem [6,
Lem. 1.120] is used to first (locally) place the differential
equations into a particularly nice geometric form, which

may, e.g., simplify the proof of the monotonicity lemma. It
would be interesting to compare the proof effort between
these two approaches, e.g., by exploring if rectification-type
arguments can be formalized conveniently using sublocale
relationships similarly to Section 5.3.
For future work, the Poincaré-Bendixson theorem is just

one of many tools that can be used to analyze (planar) dy-
namical systems. Related tools that are ripe for formalization
include: i) Liénard’s theorem [25, Chap. 3.8], which shows
the existence and uniqueness of a stable limit cycle for certain
planar systems. Such stability properties are of interest, e.g.,
in control theory and in the study of population dynamics,
as they guarantee the oscillatory behavior of such systems
even under minor disturbances. ii) Dulac’s (or Bendixson’s)
criterion [6, Prop. 1.195], that can be used to establish non-
existence of periodic orbits. As Section 6 demonstrates, these
tools can be used to formally analyze systems of interest.
Developing a library of such tools in Isabelle/HOL could also
yield, as a byproduct, an interesting library of geometric rea-
soning techniques. Finally, the Poincaré-Bendixson theorem
is also true for continuous dynamics defined on the cylin-
der and two-sphere [25, 34]; formalizing these variations
in Isabelle/HOL would require, e.g., appropriate generaliza-
tions of the Jordan curve theorem and the theory of ordinary
differential equations for those surfaces.
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