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Abstract. Recent accidents involving autonomous vehicles prompt us to con-
sider how we can engineer an autonomous vehicle which always obeys traffic
rules. This is particularly challenging because traffic rules are rarely specified at
the level of detail an engineer would expect. Hence, it is nearly impossible to for-
mally monitor behaviours of autonomous vehicles—which are expressed in terms
of position, velocity, and acceleration—with respect to the traffic rules—which
are expressed by vague concepts such as “maintaining safe distance”. We show
how we can use the Isabelle theorem prover to do this by first codifying the traf-
fic rules abstractly and then subsequently concretising each atomic proposition
in a verified manner. Thanks to Isabelle’s code generation, we can generate code
which we can use to monitor the compliance of traffic rules formally.

1 Introduction

Formalising law in a logical language is hard. Since the formalisation of the British
Nationality Act in PROLOG [19], there has yet to be another major breakthrough in the
formalisation of law. Even formalising traffic rules for highway scenarios, which seems
straightforward on the surface, possesses many challenges. The challenges are not so
much representing natural language specifications as logical entities—which we term
“codification”—as concretely interpreting predicates such as overtaking, maintaining
safe distance, or maintaining enough side clearance—which we term “concretisation”.
For example, how large is a distance in order to be categorised as safe?

We are mainly motivated to formalise traffic rules for two purposes: 1) holding
autonomous vehicles legally accountable; and 2) clarifying requirements for engineer-
ing autonomous vehicles. It is necessary that traffic rules are codified in a logical lan-
guage so that engineers have a clear and well-defined specification against which the
autonomous vehicles will be verified. However, codifying traffic rules can be done ab-
stractly by leaving predicates such as overtaking, safe-distance, and side clearance un-
defined which still makes traffic rules unclear. Therefore, these predicates need to be
concretised through legal and engineering analyses.

? This work is partially supported by the DFG Graduiertenkolleg 1480 (PUMA) and DFG NI
491/16-1



Formalising traffic rules entails choosing the logical language to codify the rules.
It must be expressive enough to codify natural language yet simple enough to have au-
tomation for checking whether the behaviours of autonomous vehicles satisfy (obey) the
formulas (traffic rules). In line with our previous works for formalising traffic rules[17],
we advocate the use of higher-order logic (HOL) as follows: we codify the rules in lin-
ear temporal logic (LTL)—which can be defined in HOL—by assuming each predicate
found in the legal text to be an atomic proposition. We then define these predicates con-
cretely in higher-order logic (HOL). In this setting, HOL provides expressiveness while
LTL allows automation.

In this paper, we focus on the German traffic rules Straßenverkehrsordnung (StVO)
especially on the paragraph about overtaking. We choose this specific paragraph, be-
cause we think that it represents the general challenge of codification and concretisation
of formalising traffic rules. The formalisation is performed with the help of the Isabelle
theorem prover in order to achieve a higher level of trustworthiness. Our contributions
are as follows:3

• We codify a part of the German overtaking traffic rules in LTL and show that these
formalise the traffic rules faithfully (Sect. 3).

• We provide a verified checker for detecting the occurrence of an overtaking from a
trace of a vehicle (Sect. 4). This requires a formal model of road network—we use
lanelets [3]—and functions for detecting lane occupied by a vehicle.

• We provide a verified checker for determining a safe distance by considering the re-
action time of the vehicle (Sect. 5); this is an improvement of our previous work [18].

• We provide a trustworthy Standard ML code for overtaking and safe distance check-
ers and that for monitoring the satisfaction of a trace against LTL formulas (Sect. 6).

2 Preliminaries

Notations used in this paper closely resemble Isabelle/HOL’s syntax. Function applica-
tion is always written in an uncurried form: instead of writing f x y as in the λ-calculus,
we always write f(x, y). We write t :: τ to indicate that term t has type τ . Types used in
this paper could either be a base type such as R for real numbers, or constructed via type
constructors such as α list and setα for list of type α and set of type α, respectively. For
an xs :: α list, we can 1.) obtain its n-th element by writing xs !n; 2.) obtain its length
by writing |xs|; 3.) drop its first n elements by writing drop(n, xs); 4.) obtain the first
and the last element by writing hd(xs) and last(xs), respectively. We use {t | x. P} as
the set builder notation where t is a term, P is a predicate, and x is a free variable in t,
which occurs in P . Another frequently used type in this work is a pair; we can obtain the
first element of a pair p :: α×β by the fst operator, fst(p) :: α, and the second element
by the snd operator, snd(p) :: β. For option data type, we use None and Some instead
of Haskell’s Nothing and Maybe; but we use Haskell’s do-notation for monadic compu-
tation. In higher-order logic, a deduction with a single premise is written as P =⇒ Q,
and if there are n premises, we write P1 =⇒ P2 =⇒ . . . =⇒ Pn =⇒ Q. In
linear temporal logic, we shall use G(φ) to denote properties that atomic proposition φ
should be true at all times.

3 Our Isabelle formalisation is in https://github.com/rizaldialbert/overtaking
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Fig. 1. Illustration of overtaking. The curve represents the overtaking trajectory. We show the
positions of the ego vehicle (filled rectangle) at four different time points t1, t2, t3, and t4. The
positions of the other vehicle (empty rectangle) are shown only for t1 and t4.

3 Codification of Traffic Rules

The Straßenverkehrsordnung (StVO)—or German traffic rules—is the main traffic code
for regulating the behaviours of motorised vehicles in Germany. It covers both the sce-
narios for urban and highway driving: here we focus on the paragraph about overtaking
(§ 5 StVO) on highway scenarios. The English version of § 5(4) StVO is:

When changing the lane to the left lane during overtaking, no following road
user shall be endangered. [. . . ] During overtaking, the driver has to change
from the fast lane to the right lane as soon as possible. The road user being
overtaken shall not be obstructed.

3.1 Legal Analysis

Overtaking in right-hand-traffic countries could be divided roughly into three parts:
changing to the left lane, passing the vehicle in front, and returning back to the original
lane (see Fig. 1). Whenever a vehicle changes to the left lane to overtake another road
user, the driver has to ensure that those on the fast lane will not be endangered. If a
vehicle that becomes a following vehicle might be endangered in any way, overtaking
is prohibited [5, § 5 StVO, recital 33]. However, this does not mean that any interfer-
ence with the following traffic needs to be avoided. If, by the overtaking manoeuvre,
the following road user is led to reduce its speed safely and will not collide with the
overtaking vehicle [4, p. 481], [15, p. 248], the vehicle is allowed to change to the left
lane. This overtaking decision must consider the speed difference of the overtaking and
the following car.

After overtaking a slower vehicle in front, the overtaking vehicle needs to return to
the right lane. This is a special manifestation of the “drive on the right”-rule in § 2(2)
StVO [7, § 5 StVO Rn. 32]. When returning to the right lane, other road users must
not be forced to brake. The overtaking vehicle also needs to keep a safe distance to
the following traffic. However, there is no fixed value for this distance and the decisive
factor is that, in the case of an unexpected emergency brake, the following vehicle must
be able to stop behind the vehicle in front. This depends on the road surface and the



Table 1. Atomic propositions and its intended interpretation

atomic proposition interpretation

overtaking performing an overtaking manoeuvre — [t1; t4)
begin-overtaking overtaking and starting to move to the next lane — [t1; t2)
merging starting to merge to the original lane — t3
finish-overtaking overtaking and returning back to the original lane — [t3; t4)
sd-rear maintaining a safe distance to the rear vehicle on all lanes
safe-to-return leave large enough distance for merging to the original lane

speed of both cars [9, § 4 StVO recital 5]. With human drivers, the response time needs
to be taken into account.

The last sentence regarding obstruction serves as a protection of the slower vehicle
being overtaken. This “no obstruction” rule has the same meaning of keeping a safe
distance to the vehicle being overtaken as in the previous paragraphs.

3.2 LTL Formulas of Traffic Rules

In order to codify traffic rules in LTL, we need to identify relevant atomic propositions
first. By using the previous legal analysis, we list required atomic propositions with
their intended interpretation in Tab. 1; references to time points t1, t2, t3, and t4 should
be seen in conjunction with illustration in Fig. 1. The LTL formulas of the traffic rules
are:

1. When changing the lane to the left lane during overtaking, no following road user
shall be endangered.

Φ1 := G (begin-overtaking −→ sd-rear)

As mentioned in the previous legal analysis, the word ‘endangered’ can be con-
cretely interpreted as maintaining a safe distance to the vehicles in the fast lane.

2. During overtaking, the driver has to change from the fast lane to the right lane as
soon as possible.

Φ2 := G (merging ←→ safe-to-return)

The phrase ‘as soon as possible’ in this rule is interpreted as the time at which
the ego vehicle has left a large enough distance. From this formula, one can infer
that atomic proposition safe-to-return and merging must evaluate to true at
the same time; this agrees with the natural language interpretation of the phrase ‘as
soon as possible’ too.

3. The road user being overtaken shall not be obstructed.

Φ3 := G (finish-overtaking −→ sd-rear)



Here the word ‘obstructed’ is interpreted as maintaining safe distance to the vehicle
being overtaken; hence the atomic proposition sd-rear in the conclusion of the
implication.

3.3 Monitoring traffic rules

One intended application of our work is to determine whether the behaviours of an
autonomous vehicle recorded in a black box comply with (overtaking) traffic rules or
not. This black box is assumed to record not only data from the ego vehicle but also
those from other road users observed by the ego vehicle or obtained from vehicle-to-
vehicle (V2V) communication. In order to analyse this black box formally, we model
the recorded data as discrete time runs (or paths). Each run is the evolution of a vehi-
cle’s state consisting of continuous data such as position, velocity, and acceleration—all
comprise values in x- and y-dimensions. We assume that the black box also contain in-
formation about the occupancies of a vehicle; they are represented by rectangles with
time-varying width and length.

For formal analysis purposes, we need to convert these runs into traces; a corre-
sponding trace of a run is defined here as the evolution of the Boolean values (truth
values) over the predefined set of atomic propositions (a word over the set of atomic
propositions). This is the next challenge for formalising traffic rules: concretely defin-
ing each atomic proposition in Tab. 1 in terms of the continuous and discrete variables
in the runs. Section 4 concretises the first four atomic propositions in Tab. 1 and Sect. 5
concretises the last two atomic propositions.

4 Concretising Overtaking Predicate

In this paper, we improve our previous definition of overtaking in [17] by defining four
instead of two time points; these points are labelled from t1 to t4 in Fig. 1. This is
required for concretising begin-overtaking, merging, and finish-overtaking.
Overtaking starts at time point t1, which is the earliest time to touch the lane divider;
in [t0; t1) the vehicle always stays in the same lane. It then continues until t2, at which
it enters the next lane completely, and stays in this lane until t3, at which it touches
the lane divider again. Overtaking is finished at t4 when it re-enters the original lane
completely. In order to detect and formalise such geometrical interpretations, we need
a formal model of lanes and a verified function for lane detection. At t1 in Fig. 1, for
example, the lane detection should tell us that it is in the rightmost lane and starts to
touch the lane boundary, and at t2, it is only in the leftmost lane.

4.1 Lanelets

We use lanelet [3] as a formal model of a lane in this work. A lanelet consists of two
nonempty monotone polygonal chains, each for representing the left and right boundary.

Definition 1 (Polygonal chains). An xs :: (R2 × R2) list is a polygonal chain if and
only if

∀ i. i+ 1 < |xs| −→ snd (xs ! i) = fst (xs ! (i+ 1)) .
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Fig. 2. An example of two lanelets with the direction to the right. The upper and lower polyg-
onal chains for lanelet 1 is points-le = [(p′0, p

′
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′
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′
2), . . . , (p

′
4, p
′
5)] and points-ri =

[(p0, p1), (p1, p2), . . . , (p4, p5)], respectively. One restriction used in this formalisation is that
the endpoints have the same value in x-dimension i. e. fst(p0) = fst(p′0) and fst(p5) = fst(p′5).
The grey area is the drivable area for lanelet 1. Both the rightmost lanelet and the rightmost
boundary are identified with 0, and they increase as we move to the leftmost lanelet and bound-
ary.

Definition 2 (Monotone polygonal chains w.r.t x-dimension). A monotone polygonal
chain w.r.t x-dimension is a polygonal chain whose x-element always increases:

∀ i < |xs|. fst (fst (xs ! i)) < fst(snd (xs ! i)) .

The property of being monotone for a polygonal chain ensures that for each x, we
have a unique y such that (x, y) is in the polygonal chain. Therefore, given a polygonal
chain points, we can always create a function f-of-x from the set of all real numbers in
x-dimension to the set of real numbers in y-dimension.

Definition 3 (Lanelets). A lanelet consists of two nonempty monotone polygonal chains
w.r.t. x-dimension, points-le and points-ri, which do not intersect and have the same
endpoints in x-dimension.

As defined in [3], there is no requirement of the relative placement between the
two polygonal chains; points-le could be positioned above points-ri (from a bird’s-eye
view) or vice-versa. If it is the former then the lanelet has the direction to the right
and to the left if it is the latter. Two polygonal chains points1 and points2 are called
non-intersecting if there does not exist any two intersecting chains c1 ∈ set points1,
c2 ∈ set points2.

Note that, with this definition, we could not model a lane which has 90◦ turn.
This is because our definition of monotone polygonal chain is fixed w.r.t. x-dimension.
Lanelets in [3] do not have this restriction, but we can circumvent this problem by using
a more general definition of monotone polygonal chains w.r.t to line l and split a polyg-
onal chain into minimal number of monotone polygonal chains [16]; each with its own



coordinate system. We impose this restriction because it eases the following definition
of drivable areas and makes the checking of intersecting polygonal chains easier.

Definition 4 (Drivable area). By using the function representation of the left and right
boundary f-of-xl and f-of-xr, and defining first-point := fst(hd(points-le)), last-point :=
fst(last(points-le)), we can define the drivable area as follows (see Fig. 2 for graphical
illustration).

setx :=
{
x
∣∣ x. first-point ≤ x ≤ last-point

}
,

between-sety(x) :=
(
min(f-of-xl(x), f-of-xr(x)); max(f-of-xl(x), f-of-xr(x))

)
,

drivable-area :=
{
(x, y)

∣∣ x y. x ∈ setx ∧ y ∈ between-sety(x)
}
.

4.2 Lane detection

In order to detect the lanelet a rectangle is currently occupying, we need first to test
whether there is a lanelet in which a rectangle is located completely inside. To achieve
this, we need to test whether the four vertices of a rectangle are located in the lanelet,
and none of the four edges intersects with any lane boundary of the lanelet. Hence, we
need two primitives here: segment intersection and point-in-lanelet test.

Segments intersection. First, we differentiate between lines and segments. A line in R2

is characterised by the line equation ax + by = c; a segment is a contiguous subset of
a line.

Definition 5 (Closed Segment). A segment is a pair of points (p, q) :: R2 × R2 and
the set of all points on this segment is

closed-segment (p, q) =
{
(1− u) · p+ u · q

∣∣u :: R. 0 ≤ u ≤ 1
}
.

With this definition, we can give the correctness and completeness condition for the
function segment-intersect we wish to define as follows:

segment-intersect(s1, s2)⇐⇒ ∃ p. p ∈ closed-segment(s1)∧ p ∈ closed-segment(s2)

By using the definition of closed segment above, the formula on the right hand side of
the bi-implication above can be reformulated as:

∃u1 u2. 0 ≤ u1 ≤ 1 ∧ 0 ≤ u2 ≤ 1 ∧ (1−u1) ·s1+u1 ·s2 = (1−u2) ·s1+u2 ·s2 ,

which is a linear arithmetic formula. Therefore, we can use decision procedures for
linear arithmetic problem to define segment-intersect. In this work, we implement a
specialised instance of Fourier–Motzkin variable elimination algorithm for this prob-
lem; readers are encouraged to consult [12] and our implementation in Isabelle for the
detailed implementation. We have proved with Isabelle theorem prover that this func-
tion indeed satisfies the correctness and completeness condition above.



Point-in-lanelet test. Let us consider a lanelet which have the direction to the right
and parameterised by points-le and points-ri as its left and right boundary, respectively,
as defined in Def. 3. To check whether a point is in a lanelet, we need to perform
the clockwise and counter-clockwise tests. Clockwise test (cw) for a triple (p1, p2, p3)
checks whether the sequence of points in the triple has a clockwise orientation; the
counter-clockwise (counter-cw) test does the opposite (see Fig. 2). The point-in-lanelet
test is defined by the following function.

point-in-lanelet(p) := let c1 = find-segment(points-le, p);

c2 = find-segment(points-ri, p)

in cw(p, fst(c1), snd(c1)) ∧ counter-cw(p, fst(c2), snd(c2))

The point-in-lanelet(p) first finds the two segments c1 and c2 in the left and right polyg-
onal chains, respectively, such that in-x-interval(c1, x) and in-x-interval(c2, x) hold (for
instance c1 = (p′4, p

′
5) and c2 = (p4, p5) in Fig. 2). With these two segments, we only

need to perform a counter-clockwise test for the triple (p, fst(c2), snd(c2)) and a clock-
wise test for the triple (p, fst(c1), snd(c1)) (see Fig. 2). This will guarantee that point
(x, y) is between the segments c1 and c2, which in turn ensures that the point is in the
drivable area.

Theorem 1. For a right-direction lanelet defined in Def. 3 with points-le and points-ri
as its left and right boundary, respectively, we have

point-in-lanelet(p) =⇒ p ∈ drivable-area .

Previously, we have explained how to test whether a rectangle is located inside a lanelet
completely. However, this is not the only possible result of lane detection; we define a
new data type to represent all possible results of our lane detection:

datatype detection-opt = Outside | Lane (n :: N) | Boundaries (ns :: N list)

Each argument in the constructor Lane and Boundaries represents the lanelet identi-
fier at which it is currently located or a list of boundaries with which a rectangle is
intersecting, respectively. Figure 2 provides two examples of lane detection. The first
rectangle intersects with boundary 0 only and hence our lane detection primitive returns
Boundaries([0]). The second rectangle meanwhile is located inside lanelet 0 and hence
our lane detection primitive returns Lane(0).

The function lane-detection takes a rectangle and lane boundaries as arguments and
returns an element of type detection-opt. It checks first whether there is any lanelet in
which a rectangle is completely located and, if there is no such lanelet, it tests for the
intersections between the lane boundaries and rectangles. This can be easily done by
checking intersections between relevant segments in the lane boundaries and edges in
the rectangle. If there is no such lane boundary, we conclude that the rectangle is outside
of any lanelet.

4.3 Overtaking detection

We can use the previously described lane detection function for detecting overtaking as
follows. Assuming that the vehicle is located in lane n initially, we use the following



function to detect t1 and t2:

increase-lane rects := do { (t1, r1) ← start-inc-lane(rects, n, 0);

(t2, r2) ← finish-inc-lane(r1, (n+ 1), (t1 + 1));

Some ((t1, t2), r2) }

The function start-inc-lane detects t1 by continuously checking whether the occupied
lane is still n and stops immediately whenever the lane detection returns the boundary
n + 1. Function finish-inc-lane detects t2 by checking whether the lane is still on the
boundary n+1 and stops immediately on the first occurrence of the lane n+1. Notice
that [t0; t2) and [t2; t4) are identical and we can therefore detect t3 and t4 similarly as
we do for t1 and t2, respectively, with function decrease-lane. Here is the theorem about
the correctness of the function increase-lane.4

Theorem 2. Assuming that the initial lane is n, we have the following deduction:

increase-lane rects = Some (t1, t2, rest) =⇒ rects′ = drop(t1 + 1, rects) =⇒
∧ t1 < |rects| ∧ t1 < t2 ∧ t2 < t1 + |rects′|
∧ lane-detection (rects ! t1) = Boundaries [n+ 1]

∧ ∀m. m < t1 −→ lane-detection (rects !m) = Lane (n)

∧ lane-detection (rects ! t2) = Lane (n+ 1)

∧ ∀m > t1. m < t2 −→ lane-detection (rects !m) = Boundaries [n+ 1]

The overtaking detection can be defined by using increase-lane and decrease-lane as
follows. The primitive looks for t1 and t2 with increase-lane first and—if we have
found this—continues to search for t3 and t4 with decrease-lane. If it cannot find t1 and
t2 initially, we can conclude that there is no occurrence of overtaking at all. It could
also be that we found t1 and t2 without the corresponding pair t3 and t4. In this case,
we discard t1 and t2 and start to look for a new occurrence of overtaking from one lane
to the left of the original lane.

5 Concretising Safe Distance Predicate

The safe distance problem has been previously explored in our previous work [18] and,
in this work, we improve it by considering nonzero reaction time. In this problem,
we are interested in the scenario where there are two vehicles involved: ego and other
vehicle which are located at s0,e and s0,o, respectively. These positions are the frontmost
part of the ego vehicle and the rearmost part of the other vehicle, respectively. We
assume that the other vehicle is located in front of the ego vehicle initially, s0,e < s0,o,
and the other vehicle performs an emergency brake with maximum deceleration ao < 0.
After 0 < δ seconds of reaction time, the ego vehicle also performs an emergency brake
with maximum deceleration ae < 0. We can define the braking movement of the other

4 We also have similar theorems for decrease-lane but they are omitted for brevity.
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Fig. 3. Cases obtained according to relative positions of ego’s stopping distance to that of the
other vehicle.

vehicle mathematically as follows:

so(t) :=

{
po(t) if 0 ≤ t ≤ tstop,o

po(tstop,o) if tstop,o ≤ t
(1)

where po(t) := s0,o + vot +
1
2aot

2 and tstop,o := − vo
ao

. To cater for the reaction time
delay, the braking movement of the ego vehicle defined here is slightly different than
what we have defined in our previous work [18]:

ue(t) :=


qe(t) if 0 ≤ t ≤ δ
p∗e (t− δ) if δ ≤ t ≤ tstop,e + δ

p∗e (tstop,e) if tstop,e − δ ≤ t
(2)

with qe(t) := s0,e + vet, p∗e (t) := qe(δ) + vet +
1
2aet

2, and tstop,e := − ve
ae

. As the
definition of qe shows, we can now model that the ego vehicle mantains its current
speed for δ seconds before performing an emergency brake. The stopping distances for
both vehicles ustop,e and sstop,o are the positions where the derivative of ue(t) and so(t),
respectively, are equal to zero; we prove that these are

ustop,e := qe(δ)−
v2e

2 · ae
and sstop,o := s0,o −

v2o
2 · ao

. (3)

The problem now is to determine a sufficient distance s0,o − s0,e such that for T =
[0;∞) the predicate no-collision-react (T ) := ¬ (∃ t ∈ T. ue(t) = so(t)) is true.

Following the methodology in our previous work [18], we analyse all possible cases
to obtain the lower bound of the distance that is still safe. There are five possible cases as
shown in Fig. 3. These five cases are obtained from case distinction based on stopping
distances ustop,e. In case 1 , the ego vehicle stops before the initial position of the other
vehicle and in case 2 it stops after the stopping position of the other vehicle; in case 3 ,



4 , and 5 , it stops in between. Case 3 is characterised by the condition where the ego
position at time δ is already in front of the other vehicle while the fourth and the fifth is
not. In case 4 , the ego vehicle stops after so(δ) i. e. the position of the other vehicle at
time t = δ, while in case 5 , the ego vehicle stops before.

As Fig. 3 shows, we can deduce that there will be no collision for case 1 because
the ego vehicle stops before the starting position of the other vehicle.

Theorem 3 (Case 1 ). ustop,e < s0,o =⇒ no-collision-react [0;∞)

From this theorem, we can replace the definition of ustop,e with the expression in Eq. 3
so that we obtain safe-distance0 := ve · δ − v2e /(2 · ae) as our zeroth safe distance
expression. In cases 2 and 3 , the stopping positions of the ego vehicle are after those
of the other vehicles’. Hence, we can deduce collisions by using the Intermediate Value
Theorem (IVT). In case 4 , we cannot deduce a collision or a collision freedom just
by looking at the stopping distances of the ego vehicle relative to the other vehicle; the
following theorem helps to deduce these.

Theorem 4 (Case 4 ). By defining

v∗o :=

{
vo + aoδ if δ ≤ tstop,o

0 otherwise
(4)

and t∗stop,o := − v∗
o
ao
, s∗0,o := so(δ), and s∗0,e := qe(δ), we have

s0,o ≤ ustop,e =⇒ ustop,e < sstop,o =⇒ no-collision-react [0;∞)⇐⇒

¬
(
ao > ae ∧ v∗o < ve ∧ s∗0,o − s∗0,e ≤

(v∗o − ve)
2

2 · (ao − ae)
∧ tstop,e < t∗stop,o

)
.

Note that the definition of v∗o depends on the condition whether the reaction time is
smaller than the stopping time of the other vehicle tstop,o. When δ ≤ tstop,o, we can rear-
range the deduction by first weakening the bi-implication into implication and replacing
the definition of ustop,e and sstop,o with their respective definitions in Eq. 3, and then use
de Morgan’s rule into:

s0,o ≤ ustop,e =⇒
(
ao > ae ∧ v∗o < ve ∧ tstop,e < t∗stop,o

)
s0,o−s0,e > veδ −

v2e
2ae

+
v2o
2ao︸ ︷︷ ︸

safe-distance1

=⇒ s0,o−s0,e >
(vo + aoδ − ve)

2

2 · (ao − ae)
− voδ −

1

2
aoδ

2 + veδ︸ ︷︷ ︸
safe-distance2

=⇒ no-collision-react [0;∞) .

If the first assumption in the deduction above is false, then we are in case 1 and Thm. 3
guarantees the situation to be collision free. Hence, to derive a checker, we can safely
ignore the first assumption above and put the second condition as a condition in an if
statement. Now, we are left with two expressions for safe distance, which can be chosen
with the following lemma.



Lemma 1. ao > ae =⇒ safe-distance1 ≤ safe-distance2.

From this lemma, we check whether the distance is larger than safe-distance2 when
ao > ae ∧ v∗o < ve ∧ tstop,e < t∗stop,o is true. Otherwise, we check the distance against
safe-distance1 because Thm. 4 suggests that this will lead to collision freedom.

In case 5 , we can deduce a collision freedom. To see this, we can reformulate
the problem into a safe distance problem without reaction time delay as we did in our
previous work [18] with δ is set to zero. Graphically speaking, we ignore any behaviour
that has happened to the left of δ in Fig. 3 and, in this reformulation, case 5 becomes
case 1 in zero reaction time delay setting. As the deduction in [18] suggests, there will
be no collision.

Theorem 5 (Case 5 ).

so ≤ ustop,e =⇒ ustop,e < sstop,o =⇒ ustop,o < so(δ) =⇒ no-collision-react [0;∞)

By using Eq. 3, the premise ustop,o < so(δ) in the deduction above can be reformu-
lated so that we can obtained the third safe distance expression for δ ≤ tstop,o as
safe-distance3 := veδ − v2e /2ae − voδ − aoδ

2/2. To summarise, we can combine
all the logical analyses above into the following checker which we have proved in Is-
abelle theorem prover to be sound and complete.

checker :=

let dist = s0,o − s0,e in
if dist > safe-distance0 ∨ (δ ≤ tstop,o ∧ dist > safe-distance3) then True

elseif δ ≤ tstop,o ∧ a0 > ae ∧ v∗o < ve ∧ tstop,e < t∗stop,o then

dist > safe-distance2 else dist > safe-distance1

We can now define the atomic proposition sd-rear and safe-to-return simply
as an application of the safe distance checker. However, the analysis above have the op-
posite assumption about the relative position of the ego and the other vehicle. Therefore,
we have to properly swap the values of position, velocity, and maximum deceleration
between the ego and the other vehicle. The key difference between the definition of
atomic proposition sd-rear and safe-to-return is that the former uses the checker
w.r.t. the vehicle in the left lanelet, while the latter is w.r.t. the vehicle in the right lanelet.

Since both sd-rear and safe-to-return are defined by using the notion of safe
distance, readers might think that the rule of returning to the right lane as soon as pos-
sible (Φ2) might not be valid because the safe distance condition might hold immedi-
ately after the change to the left lane. This would not happen due to the assumption
s0,e < s0,o in the safe distance problem explained in the beginning of this section;
our checker checks this condition implicitly5. Hence, during the monitoring of Φ2, the
values between the ego and the other vehicle are swapped and the previous condition
becomes s0,o < s0,e. After the ego vehicle change to the left lane and is still behind the
other vehicle, this condition will be false and hence our formalisation of Φ2 excludes
this scenario.

5 This can be checked in our Isabelle formalisation.
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Fig. 4. Example of overtaking scenario. The curve is the trajectory of the ego vehicle we want
to monitor. All vehicles drive to the right direction. Ego vehicle (solid rectangle) is positioned
at (0, 0) and the first vehicle (double rectangle) at (−25, 4.5) initially. Both vehicles have initial
velocity of 16.7m s−1. The second vehicle (dashed rectangle) is located at (19, 0) with initial
velocity of 11.1m s−1. All vehicles except the ego vehicle drive with constant velocity. For each
vehicle we show the position at time t1 = 0.8 s, t2 = 1.8 s, t3 = 7.3 s, and t4 = 8.4 s.

6 Monitoring overtaking traffic rules

With the concrete definition of the atomic propositions in Tab. 1, we can define a con-
verter from a run to a trace for each atomic proposition. These traces are then combined
into a word over the set of all atomic propositions for monitoring the satisfaction of the
codified traffic rules in LTL. For this purpose, we need to define the semantics we use
in this work. Since runs from an autonomous vehicles’ planners are usually finite, we
use the semantics in [6]6 which interprets LTL formulas over finite traces.

As a numerical example, we consider a situation with two lanelets (Fig. 4) in which
the first vehicle (double rectangle) is positioned behind the ego vehicle in the leftmost
lane. The ego vehicle (solid rectangle) intends to overtake the second vehicle (dashed
rectangle); both are at the rightmost lane initially. Each vehicle has the same width
(2m), length (4.8m), reaction time (1 s), and maximum deceleration (−8m s−2). The
run for this numerical example is produced by the controller for autonomous vehicles
found in [20].

In order to monitor this run on the code level, we need to generate the code for
the environment (lanelets). From Def. 3, we need to ensure that the two boundaries of
each lanelet are not intersecting. To achieve this, we have implemented a polygonal
chain intersection test according to the algorithm in [16] and proved its correctness.
The algorithm is based on a sweep-line algorithm which, as the sweeping progresses, it
checks whether each pair of chain in each boundary are relevant or not and, if the pair
is relevant, it performs an intersection check as explained in Sect. 4.

All code required for monitoring the codified traffic rules, including the semantics of
the LTL, are generated automatically by using Isabelle’s code generator [8]. Therefore,
we only have to trust the Isabelle’s code generator for the correctness of our Standard
ML’s code. However, most of the formalised functions used for monitoring traffic rules
require real numbers data type, and code generation with real numbers is usually done
with the help of Interval Arithmetic [10] or Affine Arithmetic [11]. Since this is a nu-
merical example only, mapping real numbers to machine’s floating-point numbers is
sufficient.

6 The semantics for LTL is pretty standard and, hence, we omit them for brevity.



The results of the simulation show that all overtaking traffic rules except the merging
rule (Φ2) are satisfied. Particularly, ruleΦ2 is not satisfied due to the ‘if’ (←−) fragment.
If we weaken rule Φ2 into Φ′2 := G (merging −→ safe-to-return), the run from
the controller still satisfies rule Φ′2.

7 Related Work and Conclusions

The monitoring part of our work belongs to the research area called runtime verifica-
tion; Küster [13] provides a complete overview of this research area. Specifically, our
work can be categorised as runtime monitoring. Our work does not construct a monitor
automaton [2] as in most monitoring techniques but simply executes the semantics of
LTL over finite-length traces. This is sufficient because we wish to verify traces pro-
duced by autonomous vehicles’ planners whose duration are usually not very long. The
other intended application of our work is to perform automated offline checking of a
recorded trace for compliance with traffic rules.

In terms of the logic used for specifying properties, there is signal temporal logic
(STL) [14] which is expressive enough to specify real-time properties. This is partic-
ularly useful for relaxing the requirement to satisfy a rule within a certain duration of
time such as in the ‘if’ part of Φ2. Another expressive logic for runtime monitoring
is metric first-order temporal logic (MFOTL) [1] which is capable of handling rela-
tions that change over time such as safe distance. However, we stick to logic without
first-order fragment because we do not need to reason about first-order structure for
formalising the presented subset of traffic rules.

In comparison to [18], we have improved the analysis by taking the reaction time
into consideration. This is required because autonomous vehicles will interact with hu-
man drivers and they clearly do not have zero reaction time. To achieve this, we have
to perform five instead of three case analyses in terms of the relative stopping distance
between the ego and the other vehicles. Additionally, during our formalisation effort,
we found out that we need two additional case analyses regarding the relative duration
of the stopping time and reaction time. As a result, we obtain a general checker (safe
distance expression) which has been proved to be sound and complete in Isabelle/HOL.

In comparison to [17], we now have identified four instead of two time points when
detecting overtaking occurrences. To achieve this, we need to implement two addi-
tional checkers for detecting the additional time points and formally verify them in
Isabelle/HOL. As a result, we are now able to specify traffic rules which requires these
two time points: safe distance during the beginning of the overtaking manoeuvre and
merging.

To conclude, we have formalised a subset of overtaking traffic rules in Isabelle/HOL.
By formalising traffic rules, we do not mean only the codification of traffic rules in a
logical language where abstract concepts such as overtaking and safe distance are left
unspecified: we went deeper by concretising these abstract concepts through legal and
mathematical analysis. Through these two analyses, we obtain unambiguous, precisely
defined specifications from overtaking traffic rules for autonomous vehicles. Further-
more, from these formalised traffic rules, we show how to monitor the satisfaction of a
run obtained from a planner for autonomous vehicles.
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