Generic Construction of Probability Spaces for Paths of Stochastic Processes in Isabelle/HOL

Fabian Immler

October 13, 2012

Abstract

Stochastic processes are used in probability theory to describe the evolution of random systems over time. The principal mathematical problem is the construction of a probability space for the paths of stochastic processes. The Daniell-Kolmogorov theorem solves this problem: it shows how a family of finite-dimensional distributions defines the distribution of the stochastic process. The construction is generic, i.e., it works for discrete time as well as for continuous time.

Starting from the existing formalizations of measure theory and product probability spaces in Isabelle/HOL, we provide a formal proof of the Daniell-Kolmogorov theorem in Isabelle/HOL. This requires us to formalize concepts from topology, namely polish spaces and regularity of measures on polish spaces.

These results can serve as a foundation to formalize for example discrete-time or continuous-time Markov chains, Markov decision processes, or physical phenomena like Brownian motion.

This work is described in the Master's thesis of Immler [1]

Contents

1 Auxiliarities 2
1.1 Functions: Injective and Inverse 2
1.2 Topology 4
1.3 Measures 5
1.4 Enumeration of Finite Set 7
1.5 Enumeration of Countable Union of Finite Sets 8
1.6 Sequence of Properties on Subsequences 9
1.7 Product Sets 12
2 Topological Formalizations Leading to Polish Spaces 12
2.1 Characterization of Compact Sets 12
2.2 Infimum Distance 16
2.3 Topological Basis 18
2.4 Enumerable Basis 19
2.5 Polish Spaces 22
2.6 Regularity of Measures 24
3 Finite Maps 35
3.1 Domain and Application 35
3.2 Countable Finite Maps 36
3.3 Constructor of Finite Maps 36
3.4 Product set of Finite Maps 37
3.4.1 Basic Properties of $P i^{\prime}$ 37
3.5 Metric Space of Finite Maps 39
3.6 Complete Space of Finite Maps 42
3.7 Polish Space of Finite Maps 44
3.8 Product Measurable Space of Finite Maps 48
3.9 Measure preservation 62
3.10 Isomorphism between Functions and Finite Maps 63
4 Projective Limit 68
4.1 (Finite) Product of Measures 68
4.2 Projective Family 70
4.3 Content on Generator 72
4.4 Sequences of Finite Maps in Compact Sets 74
4.5 The Daniell-Kolmogorov theorem 76
theory Auxiliarities
imports Probability

begin

1 Auxiliarities

1.1 Functions: Injective and Inverse

lemma inj-on-vimage-image-eq:
assumes inj-on $f X A \subseteq X$ shows $f-{ }^{\prime} f$ ' $A \cap X=A$
using assms by (auto simp: vimage-image-eq inj-on-def)
lemma inv-into-inv-into-superset-eq:
assumes inj-on f B
assumes bij-betw $f A A^{\prime} a \in A A \subseteq B$
shows inv-into $A^{\prime}($ inv-into $B f) a=f a$
proof -
let $? f^{\prime}=$ inv-into $A f$ let $? e^{\prime}=$ inv-into $B f$
let ? $f^{\prime \prime}=$ inv-into $A^{\prime} ? f^{\prime}$ let ? $e^{\prime \prime}=$ inv-into $A^{\prime} ? e^{\prime}$
have 1: bij-betw ? $f^{\prime} A^{\prime} A$ using assms by (auto simp add: bij-betw-inv-into) obtain a^{\prime} where 2: $a^{\prime} \in A^{\prime}$ and 3:? $f^{\prime} a^{\prime}=a$
using $1\langle a \in A\rangle$ unfolding bij－betw－def by force
have $f a=a^{\prime}$ using assms 23
by（auto simp add：bij－betw－def）
have inj－on ？$e^{\prime} A^{\prime}$
proof（intro inj－onI）
\｛ fix x assume $x \in A^{\prime}$
hence $x \in f$＇A using assms（2）by（auto simp：bij－betw－def）
hence inv－into $A f x \in A$ by（rule inv－into－into）
also note $\langle A \subseteq B\rangle$
finally have inv－into B f $x=? f^{\prime} x$
using f－inv－into－$f[O F\langle x \in$ image $f A\rangle]$
by（rule inv－into－f－eq［OF 〈inj－on $f B\rangle])$
\}
moreover
fix $x y$ assume $x \in A^{\prime} y \in A^{\prime}$ inv－into $B f x=i n v$－into $B f y$
ultimately
have inv－into A f $x=$ inv－into $A f y$ by simp
thus $x=y$ by（metis $1\left\langle x \in A^{\prime}\right\rangle\left\langle y \in A^{\prime}\right\rangle$ bij－betw－imp－inj－on inj－onD）
qed
hence ？$e^{\prime \prime} a=a^{\prime}$ using assms 2 〈f $\left.a=a^{\prime}\right\rangle$ by（intro inv－into－f－eq）auto thus ？$e^{\prime \prime} a=f a$ using $\left\langle f a=a^{\prime}\right\rangle$ by simp
qed
lemma f－inv－into－onto：
fixes $f::^{\prime} a \Rightarrow{ }^{\prime} b$ and $A::^{\prime} a$ set and $B::^{\prime} b$ set
assumes inj－on $f A B \subseteq f^{\prime} A$
shows f＇inv－into $A f^{\prime} B=B$
unfolding image－image using assms
proof safe
fix x assume $x \in B$
thus $x \in(\lambda x . f($ inv－into $A f x))$＇B
unfolding image－def
using assms $\langle x \in B\rangle$
by（auto simp：Bex－def f－inv－into－f intro！：exI［where $x=x]$ ）
qed（auto simp：f－inv－into－f）
lemma inj－on－image－subset－iff：inj－on $f(A \cup B)==>\left(f^{`} A<=f^{`} B\right)=(A<=B)$
by（simp add：inj－on－def，blast）
lemma inv－into－eq：
assumes inj－on $f A$ inj－on $g A$
assumes $x \in g$＇A
assumes $\bigwedge i . i \in A \Longrightarrow f i=g i$
shows inv－into $A f x=$ inv－into $A g x$
proof－
from assms obtain y where $g y=x y \in A$ by auto
show ？thesis
apply（rule inv－into－f－eq［OF 〈inj－on $f A\rangle]$ ）
apply（rule inv－into－into［OF $\langle x \in$ image $g A\rangle]$ ）

```
    apply (subst inv-into-f-eq[OF <inj-on g A>])
    using assms }\langlegy=x\rangle\langley\inA\rangle\mathrm{ by auto
qed
lemma inv-into-eq':
    assumes inj-on f A inj-on f B
    assumes }x\in\mp@subsup{f}{}{\prime}(A\capB
    shows inv-into A fx= inv-into Bfx
    using assms
    by (metis (full-types) Int-iff f-inv-into-f inv-into-f-f inv-into-into)
```


1．2 Topology

lemma borel－def－closed：borel $=$ sigma UNIV（Collect closed $)$ unfolding borel－def
proof（intro sigma－eqI sigma－sets－eqI，safe）
fix x ：：＇a set assume open x
hence $x=U N I V-(U N I V-x)$ by auto
also have ．．．\in sigma－sets UNIV（Collect closed）
by（rule sigma－sets．Compl）
（auto intro！：sigma－sets．Basic simp：〈open $x\rangle$ ）
finally show $x \in$ sigma－sets UNIV（Collect closed）by simp next
fix x ：：＇a set assume closed x
hence $x=U N I V-(U N I V-x)$ by auto
also have $\ldots \in$ sigma－sets UNIV（Collect open）
by（rule sigma－sets．Compl）
（auto intro！：sigma－sets．Basic simp：〈closed $x\rangle$ ）
finally show $x \in$ sigma－sets UNIV（Collect open）by simp
qed simp－all
lemma compact E^{\prime} ：
assumes compact $S \forall n \geq m$ ．$f n \in S$
obtains $l r$ where $l \in \bar{S}$ subseq $r((f \circ r)--->l)$ sequentially
proof atomize－elim
have subseq $(o p+m)$ by（simp add：subseq－def）
have $\forall n$ ．$(f o(\lambda i . m+i)) n \in S$ using assms by auto
from compact $[$［OF＜compact S 〉this］guess $l r$ ．
hence $l \in S$ subseq $((\lambda i . m+i)$ or $) \wedge(f \circ((\lambda i . m+i)$ or $))---->l$
using subseq－o［OF \langle subseq $(o p+m)\rangle\langle$ subseq $r\rangle]$ by（auto simp：o－def）
thus $\exists l r . l \in S \wedge$ subseq $r \wedge(f \circ r)---->l$ by blast
qed
lemma compact－Union［intro］：finite $S \Longrightarrow \forall T \in S$ ．compact $T \Longrightarrow \operatorname{compact}(\bigcup S)$ by（induct set：finite）auto
lemma closed－UN［intro］：finite $A \Longrightarrow \forall x \in A$ ．compact $(B x) \Longrightarrow \operatorname{compact}(\bigcup x \in A$ ． $B x$ ）
unfolding SUP－def by（rule compact－Union）auto

1.3 Measures

```
lemma
    UN-finite-countable-eq-Un:
    fixes f :: 'a::countable set }=>\mathrm{ -
    assumes }\s.Ps\Longrightarrow\mathrm{ finite s
    shows \bigcup{f s|s.Ps}=(\bigcupn::nat. let s=set (from-nat n) in if Ps then fs else
{})
proof safe
    fix x X s assume x f fs Ps
    moreover with assms obtain l where s=set l using finite-list by auto
    ultimately show }x\in(\bigcupn\mathrm{ . let }s=\mathrm{ set (from-nat n) in if P s then f s else {})
using <P s`
    by (auto intro!: exI[where x=to-nat l])
next
    fix }xn\mathrm{ assume }x\in(let s=set(from-nat n) in if P s then f s else {}
    thus }x\in\bigcup{fs|s.Ps} using assms by (auto simp: Let-def split: split-if-asm
qed
lemma
    countable-finite-comprehension:
    fixes f :: 'a::countable set }=>\mathrm{ -
    assumes }\s.Ps\Longrightarrow\mathrm{ finite s
    assumes \s. Ps\Longrightarrowfs\in sets M
    shows \bigcup{fs|s.Ps}\in sets M
proof -
    from UN-finite-countable-eq-Un[of P f] assms
    have \bigcup{fs|s.Ps}=(\bigcupn. let s=set (from-nat n) in if P s then fs else {})
by simp
    also have ...\in sets M using assms by (auto simp: Let-def)
    finally show ?thesis .
qed
lemma (in ring-of-sets) union:
    assumes f: positive Mf additive Mf and A\inMB\inM
    shows f(A\cupB)=fA+f(B-A)
    using assms by (subst additiveD[OF <additive M f`, symmetric]) auto
lemma (in ring-of-sets) plus:
    assumes f: positive M f additive Mf and A\inMB\inM
    shows fB=f(A\capB)+f(B-A)
proof -
    have }A\capB\cup(B-A)=B by aut
    thus ?thesis using assms
    by (subst additiveD[OF<additive M f>, symmetric]) auto
qed
lemma (in ring-of-sets) union-inter-minus-equality:
    assumes f: positive M f additive Mf and A\inMB\inM
    shows f(A\cupB)+f(A\capB)+f(B-A)=fA+fB+f(B-A)
```

using union [OF assms] plus[OF assms] by (simp add: ac-simps)
lemma (in ring-of-sets) union-plus-inter-equality:
assumes f : positive $M f$ additive $M f$ and $A \in M B \in M$
shows $f(A \cup B)+f(A \cap B)=f A+f B$
proof cases
assume $f(B-A)=\infty$ hence $f B=\infty f(A \cup B)=\infty$ using plus [OF assms] union [OF assms] by simp-all
thus ?thesis by simp
next
assume $f(B-A) \neq \infty$ thus ?thesis using union-inter-minus-equality $[O F$ assms] f assms
by (subst (asm) ereal-add-cancel-right) (auto dest: positiveD2[where $A=B-A]$) qed
lemma emeasure-union-plus-inter-equality:
assumes $A \in$ sets $M B \in$ sets M
shows $M(A \cup B)+M(A \cap B)=M A+M B$
by (rule union-plus-inter-equality[OF emeasure-positive emeasure-additive assms])
lemma (in finite-measure) measure-union:
assumes $A \in$ sets $M B \in$ sets M
shows measure $M(A \cup B)=$ measure $M A+$ measure $M B-$ measure $M(A$ $\cap B)$
using union-plus-inter-equality[OF emeasure-positive emeasure-additive assms] by (simp add: emeasure-eq-measure)
lemma (in ring-of-sets) subtractive:
assumes f : positive $M f$ additive $M f$ and $A \in M B \in M$ and $A \subseteq B$
and $f A<\infty$
shows $f(B-A)=f B-f A$
proof -
note union-inter-minus-equality[OF assms(1-4)]
moreover have $A \cup B=B$ using assms by auto
ultimately have $f B=f A+f(B-A)$ using assms
by (subst additive $D[O F$ 〈additive $M f$, symmetric]) auto
hence $f B-f A=f A+f(B-A)-f A$ using assms by simp
also have $\ldots=f(B-A)+f A-f A$ using assms by (auto simp: ac-simps)
also have $\ldots=f(B-A)+(f A-f A)$
by (metis ab-semigroup-add-class.add-ac(1) ereal-minus (6) ereal-uminus-uminus)
also have $f A-f A=0$ using assms by (auto simp: positive-def)
finally show ?thesis by simp
qed
lemma (in ring-of-sets) subadditive:
assumes f : positive $M f$ additive $M f$ and A : range $A \subseteq M$ and S : finite S
shows $f(\bigcup i \in S . A i) \leq\left(\sum i \in S . f(A i)\right)$
using S
proof (induct S)

```
    case empty thus ?case using f by (auto simp: positive-def)
next
    case (insert x F)
    hence in-M:A x\inM(\bigcupi\inF.A i)\inM(\bigcupi\inF.A i) - Ax\inM using A
by force+
    have subs: (\bigcup i\inF.A i) - A x\subseteq(\bigcup i\inF.A i) by auto
    have (U i\in(insert x F). A i)=Ax\cup((U i\inF.Ai) - A x) by auto
    hence f}(\bigcupi\in(\mathrm{ insert x F).A i)=f(Ax U((U i,F.A i) - Ax))
        by simp
    also have ... =f(Ax)+f((U i\inF.A i) - A x )
        using f(2) by (rule additiveD) (insert in-M, auto)
    also have .. \leqf (A x)+f(U i\inF.A i)
        using additive-increasing[OF f] in-M subs by (auto simp: increasing-def intro:
add-left-mono)
    also have .. \leqf (A x) +(\sumi\inF.f(A i)) using insert by (auto intro:
add-left-mono)
    finally show f(U i\in(insert x F).A i) \leq(\sumi\in(insert x F).f(Ai)) using
insert by simp
qed
lemma finite-Union:
    fixes A::'a::countable set
    assumes \i.i\inA\LongrightarrowBi\in sigma-sets sp C
    shows \bigcupB'}A\in\mathrm{ sigma-sets sp }
proof cases
    assume }A={}\mathrm{ thus ?thesis by (simp add: Empty)
next
    assume }A\not={}\mathrm{ then obtain }a\mathrm{ where }a\inA\mathrm{ by auto
    have UN:UNION A B =
        UNION UNIV (\lambdai. if from-nat i }\inA\mathrm{ then B (from-nat i) else B a) using <a
A 
    apply auto
    proof -
        case goal1 thus ?case
        by (auto intro: exI[where x=to-nat xa])
    next
        case goal2 thus ?case by (auto split: split-if-asm simp add: Bex-def)
    qed
    show ?thesis using assms \langlea\inA\rangle by (auto intro: Union simp: UN)
qed
```


1.4 Enumeration of Finite Set

definition enum-finite-max $J=(S O M E n . \exists f . J=f ‘\{i . i<n\} \wedge \operatorname{inj}$-on $f\{i$. $i<n\}$)
definition enum-finite where
enum-finite $J=$
(SOME f. $J=f ‘\{i::$ nat. $i<$ enum-finite-max $J\} \wedge \operatorname{inj-on~} f\{i . i<$

```
enum-finite-max J})
lemma enum-finite-max:
    assumes finite J
    shows \existsf::nat }\mp@subsup{=>}{}{\prime}a.J=f`{i.i<enum-finite-max J}^inj-on f {i.i<
enum-finite-max J}
    unfolding enum-finite-max-def
    by (rule someI-ex) (rule finite-imp-nat-seg-image-inj-on[OF 〈finite }J\rangle]
lemma enum-finite:
    assumes finite J
    shows J = enum-finite J' {i::nat. i< enum-finite-max J}^
        inj-on (enum-finite J) {i::nat. i < enum-finite-max J}
    unfolding enum-finite-def
    by (rule someI-ex[of \lambdaf. J =f'{i::nat. i < enum-finite-max J} ^
        inj-on f {i. i < enum-finite-max J}])
    (rule enum-finite-max[OF〈{inite }J\rangle]
lemma in-set-enum-exist:
    assumes finite }
    assumes }y\in
    shows \existsi. y = enum-finite A i
    using assms enum-finite by auto
```


1.5 Enumeration of Countable Union of Finite Sets

```
locale finite-set-sequence =
```

locale finite-set-sequence =
fixes Js::nat = 'a set
fixes Js::nat = 'a set
assumes finite-seq[simp]: finite (Js n)
assumes finite-seq[simp]: finite (Js n)
begin
begin
definition set-of-Un where set-of-Un j = (LEAST n.j G Js n)
definition set-of-Un where set-of-Un j = (LEAST n.j G Js n)
definition index-in-set where index-in-set J j = (SOME n.j=enum-finite J n)
definition index-in-set where index-in-set J j = (SOME n.j=enum-finite J n)
definition Un-to-nat where
definition Un-to-nat where
Un-to-nat j = to-nat (set-of-Un j, index-in-set (Js (set-of-Un j)) j)
Un-to-nat j = to-nat (set-of-Un j, index-in-set (Js (set-of-Un j)) j)
lemma inj-on-Un-to-nat:
lemma inj-on-Un-to-nat:
shows inj-on Un-to-nat (\n::nat. Js n)
shows inj-on Un-to-nat (\n::nat. Js n)
proof (rule inj-onI)
proof (rule inj-onI)
fix x y
fix x y
assume }x\in(\bigcupn.Js n) y\in(\bigcupn. Js n
assume }x\in(\bigcupn.Js n) y\in(\bigcupn. Js n
then obtain ix iy where ix:x\inJs ix and iy: y f Js iy by blast
then obtain ix iy where ix:x\inJs ix and iy: y f Js iy by blast
assume Un-to-nat x = Un-to-nat y
assume Un-to-nat x = Un-to-nat y
hence set-of-Un x = set-of-Un y
hence set-of-Un x = set-of-Un y
index-in-set (Js (set-of-Un y)) y = index-in-set (Js (set-of-Un x)) x
index-in-set (Js (set-of-Un y)) y = index-in-set (Js (set-of-Un x)) x
by (auto simp: Un-to-nat-def)
by (auto simp: Un-to-nat-def)
moreover

```
    moreover
```

```
    have y Gs (set-of-Un y) unfolding set-of-Un-def using iy by (rule LeastI)
    have }x\inJs\mathrm{ (set-of-Un x) unfolding set-of-Un-def using ix by (rule LeastI)
    have y=enum-finite (Js (set-of-Un y)) (index-in-set (Js (set-of-Un y)) y)
        unfolding index-in-set-def
        apply (rule someI-ex)
        using < }y\inJs(\mathrm{ set-of-Un y)> finite-seq
        apply (auto intro!: in-set-enum-exist)
        done
    moreover have x =enum-finite (Js (set-of-Un x)) (index-in-set (Js (set-of-Un
x)) x)
    unfolding index-in-set-def
    apply (rule someI-ex)
    using <x }\in\mathrm{ Js (set-of-Un x)> finite-seq
    apply (auto intro!: in-set-enum-exist)
    done
    ultimately show }x=y\mathrm{ by simp
qed
lemma inj-Un[simp]:
    shows inj-on (Un-to-nat) (Js n)
    by (intro subset-inj-on[OF inj-on-Un-to-nat]) (auto simp: assms)
lemma Un-to-nat-injectiveD:
    assumes Un-to-nat x = Un-to-nat y
    assumes }x\inJs i y\inJs
    shows }x=
    using assms
    by (intro inj-onD[OF inj-on-Un-to-nat]) auto
end
```


1.6 Sequence of Properties on Subsequences

```
lemma subseq-mono: assumes subseq \(r m<n\) shows \(r m<r n\)
```

lemma subseq-mono: assumes subseq $r m<n$ shows $r m<r n$
using assms by (auto simp: subseq-def)
using assms by (auto simp: subseq-def)
locale subseqs $=$
locale subseqs $=$
fixes $P:: n a t \Rightarrow(n a t \Rightarrow n a t) \Rightarrow(n a t \Rightarrow n a t) \Rightarrow b o o l$
fixes $P:: n a t \Rightarrow(n a t \Rightarrow n a t) \Rightarrow(n a t \Rightarrow n a t) \Rightarrow b o o l$
assumes ex-subseq: $\bigwedge n$ s. subseq $s \Longrightarrow \exists r^{\prime}$. subseq $r^{\prime} \wedge P n s r^{\prime}$
assumes ex-subseq: $\bigwedge n$ s. subseq $s \Longrightarrow \exists r^{\prime}$. subseq $r^{\prime} \wedge P n s r^{\prime}$
begin
begin
primrec seqseq where
primrec seqseq where
seqseq $0=i d$
seqseq $0=i d$
\mid seqseq $($ Suc $n)=$ seqseq $n o\left(\right.$ SOME r^{\prime}. subseq $r^{\prime} \wedge P n($ seqseq $\left.n) r^{\prime}\right)$
\mid seqseq $($ Suc $n)=$ seqseq $n o\left(\right.$ SOME r^{\prime}. subseq $r^{\prime} \wedge P n($ seqseq $\left.n) r^{\prime}\right)$
lemma seqseq-ex:
lemma seqseq-ex:
shows subseq (seqseq n) \wedge
shows subseq (seqseq n) \wedge
$\left(\exists r^{\prime}\right.$. seqseq $($ Suc $n)=$ seqseq n o $r^{\prime} \wedge$ subseq $r^{\prime} \wedge P n($ seqseq $\left.n) r^{\prime}\right)$
$\left(\exists r^{\prime}\right.$. seqseq $($ Suc $n)=$ seqseq n o $r^{\prime} \wedge$ subseq $r^{\prime} \wedge P n($ seqseq $\left.n) r^{\prime}\right)$
proof (induct n)

```
proof (induct \(n\) )
```

```
    case 0
    let ?P = \lambdar'. subseq r r}^^P0id r
    let ?r = Eps ?P
    have ?P ?r using ex-subseq[of id 0] by (intro someI-ex[of ?P]) (auto simp:
subseq-def)
    thus ?case by (auto simp: subseq-def) (simp add: id-def)
next
    case (Suc n)
    then obtain r' where
        Suc': seqseq (Suc n) = seqseq n ○ r' subseq (seqseq n) subseq r'
            P n (seqseq n) r'
        by blast
    let ?P = \lambdar'a.subseq (r'a)}\)\P(Suc n)(seqseq n o r') r'
    let ?r = Eps ?P
    have ?P ?r using ex-subseq[of seqseq n o r'Suc n] Suc'
        by (intro someI-ex[of ?P]) (auto intro: subseq-o simp:o-assoc)
    moreover have seqseq (Suc (Suc n)) = seqseq n ○ r' ○ ?r
        by (subst seqseq.simps) (simp only:Suc' o-assoc)
    moreover note subseq-o[OF <subseq (seqseq n)〉\langlesubseq r'>}
    ultimately show ?case unfolding Suc' by (auto simp:o-def)
qed
lemma subseq-seqseq:
    shows subseq (seqseq n) using seqseq-ex[OF assms] by auto
definition reducer where reducer n = (SOME r'. subseq r'^^Pn(seqseq n) r')
lemma subseq-reducer: subseq (reducer n) and reducer-reduces: P n (seqseq n)
(reducer n)
    unfolding atomize-conj unfolding reducer-def using subseq-seqseq
    by (rule someI-ex[OF ex-subseq])
lemma seqseq-reducer[simp]:
    seqseq (Suc n) = seqseq n o reducer n
    by (simp add: reducer-def)
declare seqseq.simps(2)[simp del]
definition diagseq where diagseq i = seqseq i i
lemma diagseq-mono: diagseq }n<diagseq (Suc n
    unfolding diagseq-def seqseq-reducer o-def
    by (metis subseq-mono[OF subseq-seqseq] less-le-trans lessI seq-suble subseq-reducer)
lemma subseq-diagseq: subseq diagseq
    using diagseq-mono by (simp add: subseq-Suc-iff diagseq-def)
primrec fold-reduce where
    fold-reduce n 0 = id
```

| fold-reduce $n($ Suc $k)=$ fold-reduce $n k$ oreducer $(n+k)$
lemma subseq-fold-reduce: subseq (fold-reduce $n k$)
proof (induct k)
case (Suc k) from subseq-o[OF this subseq-reducer] show ?case by (simp add:
$o-d e f)$
qed (simp add: subseq-def)
lemma ex-subseq-reduce-index: seqseq $(n+k)=$ seqseq n o fold-reduce $n k$
by (induct k) simp-all
lemma seqseq-fold-reduce: seqseq $n=$ fold-reduce $0 n$
by (induct n) (simp-all)
lemma diagseq-fold-reduce: diagseq $n=$ fold-reduce 0 n n using seqseq-fold-reduce by (simp add: diagseq-def)
lemma fold-reduce-add: fold-reduce $0(m+n)=$ fold-reduce $0 m$ o fold-reduce m n
by (induct n) simp-all
lemma diagseq-add: diagseq $(k+n)=($ seqseq $k o($ fold-reduce $k n))(k+n)$
proof -
have diagseq $(k+n)=$ fold-reduce $0(k+n)(k+n)$
by (simp add: diagseq-fold-reduce)
also have $\ldots=($ seqseq k o fold-reduce $k n)(k+n)$
unfolding fold-reduce-add seqseq-fold-reduce ..
finally show?thesis .
qed
lemma diagseq-sub:
assumes $m \leq n$ shows diagseq $n=($ seqseq $m o($ fold-reduce $m(n-m))) n$ using diagseq-add[of $m n-m$] assms by simp
lemma subseq-diagonal-rest: subseq (λx. fold-reduce $k x(k+x)$)
unfolding subseq-Suc-iff fold-reduce.simps o-def
by (metis subseq-mono[OF subseq-fold-reduce] less-le-trans lessI add-Suc-right seq-suble
subseq-reducer)
lemma diagseq-seqseq: diagseq o $(o p+k)=($ seqseq $k o(\lambda x$. fold-reduce $k x(k+$ $x)$))
by (auto simp: o-def diagseq-add)
lemma eventually-sequentially-diagseq:
assumes $\bigwedge n s r$. $P n s r=(\forall i . Q n((s o r) i))$
shows eventually ($\lambda i . Q n$ (diagseq $i)$) sequentially
unfolding eventually-sequentially
apply (intro exI[where $x=$ Suc $n]$)

```
    apply safe
    apply (subst diagseq-sub) apply simp
    using reducer-reduces[of n, simplified assms, simplified seqseq-reducer[symmetric]]
    apply simp
    done
lemma diagseq-holds:
    assumes seq-property: \nsr. P n s r = Q n (s or)
    assumes subseq-closed: \nsr. subseq r\LongrightarrowQ ns \Longrightarrow Q n(sor)
    shows P n diagseq (op + (Suc n))
    unfolding seq-property diagseq-seqseq
    by (intro subseq-closed subseq-diagonal-rest)
        (auto simp: reducer-reduces seq-property[symmetric])
end
```


1.7 Product Sets

```
lemma PiE-def':P\mp@subsup{i}{E}{}IA={f.(\foralli\inI.fi\inAi)\wedgef=restrict fI}
    apply auto
    apply (metis extensional-restrict)
    apply (metis restrict-extensional)
    done
lemma prod-emb-def': prod-emb I MJ X ={a\inPi\mp@subsup{i}{E}{}I(\lambdai. space (M i)). restrict
a J \inX}
    by (auto simp: prod-emb-def)
lemma prod-emb-subsetI:
    assumes F\subseteqG
    shows prod-emb A M B F\subseteq prod-emb A M BG
    using assms by (auto simp: prod-emb-def)
end
```

theory Polish-Space
imports Auxiliarities
begin

2 Topological Formalizations Leading to Polish Spaces

2.1 Characterization of Compact Sets

lemma pos-approach-nat:
fixes $e:$:real
assumes $0<e$
obtains n ::nat where $1 /($ Suc $n)<e$

```
proof atomize-elim
    have \(1 / \operatorname{real}(\operatorname{Suc}(\operatorname{nat}(\operatorname{ceiling}(1 / e))))<1 /(\) ceiling \((1 / e))\)
    by (rule divide-strict-left-mono) (auto intro!: mult-pos-pos simp: \(\langle 0<e\rangle\) )
    also have \(1 /(\) ceiling \((1 / e)) \leq 1 /(1 / e)\)
        by (rule divide-left-mono) (auto intro!: divide-pos-pos simp: \(\langle 0<e\rangle\) )
    also have \(\ldots=e\) by simp
    finally show \(\exists n .1 / \operatorname{real}(\) Suc \(n)<e .\).
qed
TODO: move to Topology-Euclidean-Space
lemma compact-eq-totally-bounded:
    shows compact \(s \longleftrightarrow\) complete \(s \wedge(\forall e>0\). \(\exists k\). finite \(k \wedge s \subseteq(\bigcup((\lambda x\). ball \(x\)
\(\left.\left.e)^{\prime} k\right)\right)\) )
proof (safe intro!: compact-imp-complete)
    fix \(e::\) real
    def \(f \equiv\left(\lambda x::^{\prime} a\right.\). ball \(\left.x e\right)\) 'UNIV
    assume \(0<e\) compact \(s\)
    hence \((\forall t \in f\). open \(t) \wedge s \subseteq \bigcup f \longrightarrow\left(\exists f^{\prime} \subseteq f\right.\). finite \(\left.f^{\prime} \wedge s \subseteq \bigcup f^{\prime}\right)\)
        by (simp add: compact-eq-heine-borel)
    moreover
    have \(d 0\) : \(\bigwedge x::^{\prime} a\). dist \(x x<e\) using \(\langle 0<e\rangle\) by simp
    hence \((\forall t \in f\). open \(t) \wedge s \subseteq \bigcup f\) by (auto simp: f-def intro!: do)
    ultimately have ( \(\exists f^{\prime} \subseteq f\). finite \(f^{\prime} \wedge s \subseteq \bigcup f^{\prime}\) )..
    then guess \(K\).. note \(K=\) this
    have \(\forall K^{\prime} \in K . \exists k . K^{\prime}=\) ball \(k\) e using \(K\) by (auto simp: \(f\)-def)
    then obtain \(k\) where \(\bigwedge K^{\prime} . K^{\prime} \in K \Longrightarrow K^{\prime}=\) ball \(\left(k K^{\prime}\right) e\) unfolding bchoice-iff
by blast
    thus \(\exists k\). finite \(k \wedge s \subseteq \bigcup(\lambda x\). ball \(x e) ' k\) using \(K\)
        by (intro exI[where \(x=k\) ' \(K]\) ) (auto simp: \(f\)-def)
next
    assume assms: complete \(s \forall e>0 . \exists k\). finite \(k \wedge s \subseteq \bigcup(\lambda x\). ball \(x e)\) ' \(k\)
    show compact s
    proof cases
        assume \(s=\{ \}\) thus compact \(s\) by simp
    next
        assume \(s \neq\{ \}\)
        show ?thesis
            unfolding compact-def
    proof safe
                fix \(f:: n a t \Rightarrow\) - assume \(\forall n . f n \in s\) hence \(f: \bigwedge n . f n \in s\) by simp
                from assms have \(\forall e . \exists k . e>0 \longrightarrow\) finite \(k \wedge s \subseteq\left(\bigcup\left((\lambda x \text {. ball } x e)^{\prime} k\right)\right)\) by
simp
        then obtain \(K\) where
                            \(K: \bigwedge e . e>0 \Longrightarrow\) finite \((K e) \wedge s \subseteq\left(\bigcup\left((\lambda x\right.\right.\). ball \(x e)\) ' \(\left(\begin{array}{l}K e)))\end{array}\right.\)
            unfolding choice-iff by blast
        \{
            fix \(e::\) real and \(f^{\prime}\) have \(f^{\prime}: \bigwedge n:: n a t\). \(\left(f o f^{\prime}\right) n \in s\) using \(f\) by auto
            assume \(e>0\)
            from \(K[O F\) this \(]\) have \(K\) : finite \((K e) s \subseteq\left(\bigcup\left((\lambda x\right.\right.\). ball \(x e)\) ' \(\left(\begin{array}{l}K e))) \\ \end{array}\right.\)
```

```
        by simp-all
    have }\existsk\in(Ke).\existsr.subseq r\wedge(\foralli.(fo\mp@subsup{f}{}{\prime}or)i\inball ke
    proof (rule ccontr)
    from K have finite (Ke) Ke\not={}s\subseteq(U((\lambdax.ball x e)'(Ke)))
            using <s\not={}`
            by auto
    moreover
    assume }\neg(\existsk\inKe.\existsr.subseq r\wedge(\foralli.(f\circ\mp@subsup{f}{}{\prime}or)i\inball ke)
    hence \r k.k\inKe\Longrightarrow subseq r\Longrightarrow(\existsi.(foffor) i\not\in ball ke) by
simp
    ultimately
    show False using f'
    proof (induct arbitrary:s ff 'rule: finite-ne-induct)
        case (singleton x)
            have \existsi.(f\circf'o id) i\not\in ball x e by (rule singleton) (auto simp:
subseq-def)
            thus ?case using singleton by (auto simp: ball-def)
    next
        case (insert x A)
        show ?case
        proof cases
        have inf-ms: infinite ((fof ) -' s) using insert by (simp add:
vimage-def)
            have infinite ((fof') -` \bigcup((\lambdax. ball x e)'(insert x A )))
            using insert by (intro infinite-super[OF - inf-ms]) auto
            also have ((fof') -` U((\lambdax.ball x e)` (insert x A )))=
                {m.(fof')m\in ball x e} \cup{m.(fof')m\in\bigcup((\lambdax.ball x e)'A)}
by auto
            finally have infinite ... .
            moreover assume finite {m.(fof') m b ball x e}
                            ultimately have inf: infinite {m.(fof')m}\in\bigcup\((\lambdax.ball x e)'A)
by blast
            hence A\not={} by auto then obtain k where k\inA by auto
            def r \equivenumerate {m. (fof') m\in\bigcup((\lambdax. ball x e)'A)}
            have r-mono: \nm. n<m\Longrightarrowrn<rm
                using enumerate-mono[OF - inf] by (simp add:r-def)
            hence subseq r by (simp add: subseq-def)
            have r-in-set: \n.r n \in{m. (fof') m G \((\lambdax.ball x e)'A)}
                using enumerate-in-set[OF inf] by (simp add: r-def)
                    show False
                    proof (rule insert)
                show U(\lambdax.ball x e)' }A\subseteq\bigcup(\lambdax.ball x e)'A by sim
                fix }ks\mathrm{ assume }k\inA\mathrm{ subseq s
                thus \existsi.(fofforor s) i\not\inball k e using <subseq r>
                by (subst (2) o-assoc[symmetric]) (intro insert(6) subseq-o, simp-all)
            next
                fix n show (f\circf'or) n U \bigcup(\lambdax. ball x e) ' A using r-in-set by
                    auto
            qed
```

```
            next
            assume inf: infinite {m.(fof
            def r \equivenumerate {m. (fof')m\in ball x e}
            have r-mono: \nm. n<m\Longrightarrowrn<rm
                        using enumerate-mono[OF - inf] by (simp add: r-def)
                    hence subseq r by (simp add: subseq-def)
                    from insert(6)[OF insertI1 this] obtain i where (fof
xe by auto
            moreover
            have r-in-set: \n.r n { {m. (fof') m b ball x e}
                            using enumerate-in-set[OF inf] by (simp add: r-def)
                    hence (fof
                    ultimately show False by simp
                    qed
            qed
        qed
    }
    hence }\forall\mp@subsup{f}{}{\prime}.\foralle>0.(\existsk\inKe.\existsr. subseq r\wedge(\foralli.(fof'\circr)i\inball ke)
by simp
    hence }\forall\mp@subsup{f}{}{\prime}.\foralle.(\existsk.e>0\longrightarrow(k\inKe\wedge(\existsr.subseq r\wedge(\foralli.(fof'\circr
i\in ball ke))))
            by (simp add: Bex-def)
    then obtain k where k: \forallf'.}\foralle>0.(k\mp@subsup{f}{}{\prime}e\inKe
            (\existsr. subseq r ^( }\foralli.(f\circ\mp@subsup{f}{}{\prime}\circr)i\in\mathrm{ ball ( }k\mp@subsup{f}{}{\prime}e)e))
            unfolding choice-iff by atomize-elim
    let ?P = \lambdan s x. (\foralli. (fosoox) i\in ball (ks (1/real (Suc n))) (1/real (Suc
n)))
    interpret subseqs ?P using k
        by unfold-locales simp
    from 〈complete s> have limI: \f. (\bigwedgen.fn \ins)\LongrightarrowCauchy f\Longrightarrow(\existsl\ins.f
----> l)
            by (simp add: complete-def)
    have }\existsl\ins.(f o diagseq) ----> 
    proof (intro limI metric-CauchyI)
        fix e::real assume 0<e hence 0<e/2 by auto
        from pos-approach-nat[OF this] guess n . note n= this
```



```
        proof (rule exI[where x=Suc n], safe)
            fix mmm assume Suc n\leqm Suc n \leqmm
            let ?e = 1 / real (Suc n)
            let ?k}=(k(\mathrm{ seqseq n)?e)
            from reducer-reduces[of n]
            have \i. (f o seqseq (Suc n)) i f ball ?k ?e unfolding seqseq-reducer by
simp
            moreover
            note diagseq-sub[OF <Suc n\leqm>] diagseq-sub[OF〈Suc n \leqmm`]
                ultimately have {(fo diagseq) m, (fo diagseq) mm} \subseteq ball ?k ?e by
                    auto
            also have ...\subseteqball ?k (e/2) using n by (intro subset-ball) simp
```

```
                    finally
                    have dist ?k ((f\circ diagseq) m) + dist?k ((f\circ diagseq) mm)<e/2 +e
/2
            by (intro add-strict-mono) auto
            hence dist ((f\circ diagseq) m) ?k + dist ((f\circ diagseq) mm) ?k <e
                by (simp add: dist-commute)
            moreover have dist ((f\circ diagseq) m) ((f\circ diagseq) mm)\leq
                        dist ((f\circ diagseq) m) ?k + dist ((f\circ diagseq) mm) ?k
                        by (rule dist-triangle2)
            ultimately show dist ((f\circ\mathrm{ diagseq ) m) ((f ○ diagseq) mm)<e}<<<<
                by simp
            qed
        next
            fix }n\mathrm{ show (fo diagseq) n}\ins\mathrm{ using f by simp
            qed
            thus }\existsl\ins.\existsr.subseq r\wedge(f\circr)---->l using subseq-diagseq by aut
        qed
    qed
qed
```


2.2 Infimum Distance

```
definition infdist \(x A=\operatorname{Inf}\{\) dist \(x a \mid a . a \in A\}\)
lemma infdist-nonneg:
assumes \(A \neq\{ \}\)
shows \(0 \leq i n f d i s t x A\)
using assms by (auto simp add: infdist-def)
lemma infdist-le:
assumes \(a \in A\)
assumes \(d=\) dist \(x a\)
shows infdist \(x A \leq d\)
using assms by (auto intro!: SupInf.Inf-lower[where \(z=0]\) simp add: infdist-def)
lemma infdist-zero [simp]:
assumes \(a \in A\) shows infdist \(a A=0\)
proof -
from infdist-le \([O F\) assms, of dist \(a \operatorname{a}\) ] have infdist \(a \operatorname{A} \leq 0\) by auto
with infdist-nonneg \([\) of \(A\) a] assms show infdist \(a A=0\) by auto
qed
lemma infdist-triangle:
assumes \(A \neq\{ \}\)
shows infdist \(x A \leq\) infdist \(y A+\) dist \(x y\)
proof -
from assms obtain \(a\) where \(a \in A\) by auto
have infdist \(x A \leq \operatorname{Inf}\{\) dist \(x y+\) dist \(y a \mid a . a \in A\}\)
proof
```

```
    from assms show {dist x y + dist y a |a. a\inA}\not={} by simp
    fix d}\mathrm{ assume d {{dist x y + dist y a |a.a 隹}
    then obtain a where d:d=dist x y + dist y a a }\in
    show infdist x A\leqd
    unfolding infdist-def
    proof (rule Inf-lower2)
        show dist x a { {dist xa|a.a\inA} using <a\inA\rangle by auto
        show dist x a \leqd unfolding d by (rule dist-triangle)
        fix d}\mathrm{ assume d d {dist x a |a.a 恠}
        then obtain a where a\inAd= dist x a by auto
        thus infdist x A {d by (rule infdist-le)
    qed
qed
also have ... = dist x y + infdist y A
proof (rule Inf-eq, safe)
    fix a assume a\inA
    thus dist x y + infdist y A dist x y + dist y a by (auto intro: infdist-le)
next
    fix i assume inf: \d. d \in{dist x y + dist y a |a. a\inA}\Longrightarrowi\leqd
    hence }i-\mathrm{ dist x y infdist y A unfolding infdist-def using <a }\in
        by (intro Inf-greatest) (auto simp: field-simps)
    thus i\leqdist x y + infdist y A by simp
qed
finally show ?thesis by simp
qed
lemma
    in-closure-iff-infdist-zero:
    assumes }A\not={
    shows }x\in\mathrm{ closure }A\longleftrightarrow\mathrm{ infdist x A=0
proof
    assume }x\in\mathrm{ closure A
    show infdist x A = 0
    proof (rule ccontr)
        assume infdist x A\not=0
        with infdist-nonneg[OF }\langleA\not={}\rangle\mathrm{ , of }x]\mathrm{ have infdist }xA>0\mathrm{ by auto
        hence ball x (infdist xA) \cap closure A={} apply auto
            by (metis }<0<\mathrm{ infdist x A` \x closure A` closure-approachable dist-commute
                eucl-less-not-refl euclidean-trans(2) infdist-le)
    hence }x\not\in\mathrm{ closure A by (metis < 0 < infdist x A` centre-in-ball disjoint-iff-not-equal)
    thus False using <x\in closure A by simp
    qed
next
    assume x: infdist x A = 0
    then obtain a where a\inA by atomize-elim (metis all-not-in-conv assms)
    show }x\in\mathrm{ closure A unfolding closure-approachable
    proof (safe, rule ccontr)
        fix e::real assume 0<e
        assume }\neg(\existsy\inA\mathrm{ . dist }yx<e
```

```
    hence infdist x A \geqe using <a \inA\rangle
            unfolding infdist-def
            by (force intro: Inf-greatest simp: dist-commute)
        with }x<0<e\rangle\mathrm{ show False by auto
    qed
qed
lemma
    in-closed-iff-infdist-zero:
    assumes closed A A}\not={
    shows }x\inA\longleftrightarrow\mathrm{ infdist }xA=
proof -
    have }x\in\mathrm{ closure }A\longleftrightarrow\mathrm{ infdist }xA=
        by (rule in-closure-iff-infdist-zero) fact
    with assms show ?thesis by simp
qed
lemma continuous-infdist:
    assumes A\not={}
    shows continuous (at x) ( }\lambdax\mathrm{ . infdist x A)
    unfolding continuous-at-eps-delta
proof safe
    fix e ::real assume 0<e
    moreover {
    fix }
    from infdist-triangle[OF 〈A\not= {}>, of x y] infdist-triangle[OF〈A\not= {}>, of y x]
        have dist (infdist y A) (infdist x A) \leq dist y }x\mathrm{ by (simp add: dist-commute
dist-real-def)
    also assume dist y x<e
    finally have dist (infdist y A) (infdist x A) <e.
    } ultimately show }\existsd>0.\forall\mp@subsup{x}{}{\prime}.\mathrm{ dist }\mp@subsup{x}{}{\prime}x<d\longrightarrow\mathrm{ dist (infdist x'A) (infdist x
A)<e by blast
qed
```


2.3 Topological Basis

context topological-space
begin
definition topological-basis $B=$

$$
\left((\forall b \in B . \text { open } b) \wedge\left(\forall x . \text { open } x \longrightarrow\left(\exists B^{\prime} . B^{\prime} \subseteq B \wedge \text { Union } B^{\prime}=x\right)\right)\right)
$$

lemma topological-basis-iff:
assumes $\bigwedge B^{\prime} . B^{\prime} \in B \Longrightarrow$ open B^{\prime}
shows topological-basis $B \longleftrightarrow\left(\forall O^{\prime}\right.$. open $O^{\prime} \longrightarrow\left(\forall x \in O^{\prime} . \exists B^{\prime} \in B . x \in B^{\prime} \wedge\right.$ $\left.B^{\prime} \subseteq O^{\prime}\right)$)
(is - \longleftrightarrow ? rhs)
proof safe
fix O^{\prime} and $x::^{\prime} a$

```
    assume H: topological-basis B open }\mp@subsup{O}{}{\prime}x\in\mp@subsup{O}{}{\prime
    hence ( }\exists\mp@subsup{B}{}{\prime}\subseteqB.\cup\mp@subsup{B}{}{\prime}=\mp@subsup{O}{}{\prime})\mathrm{ by (simp add: topological-basis-def)
    then obtain }\mp@subsup{B}{}{\prime}\mathrm{ where }\mp@subsup{B}{}{\prime}\subseteqB\mp@subsup{O}{}{\prime}=\bigcup\mp@subsup{B}{}{\prime}\mathrm{ by auto
    thus \exists\mp@subsup{B}{}{\prime}\inB.x\in\mp@subsup{B}{}{\prime}\wedge\mp@subsup{B}{}{\prime}\subseteq\mp@subsup{O}{}{\prime}\mathrm{ using H by auto}
next
    assume H:?rhs
    show topological-basis B using assms unfolding topological-basis-def
    proof safe
        fix }\mp@subsup{O}{}{\prime}::'a set assume open O'
        with H obtain f where }\forallx\in\mp@subsup{O}{}{\prime}.fx\inB\wedgex\infx\wedgefx\subseteq\mp@subsup{O}{}{\prime
        by (force intro: bchoice simp: Bex-def)
    thus }\exists\mp@subsup{B}{}{\prime}\subseteqB.\cup\mp@subsup{B}{}{\prime}=\mp@subsup{O}{}{\prime
        by (auto intro: exI[where }x={fx|x.x\in\mp@subsup{O}{}{\prime}}]
    qed
qed
lemma topological-basisI:
    assumes }\bigwedge\mp@subsup{B}{}{\prime}.\mp@subsup{B}{}{\prime}\inB\Longrightarrow\mathrm{ open }\mp@subsup{B}{}{\prime
    assumes }\bigwedge\mp@subsup{O}{}{\prime}x\mathrm{ . open }\mp@subsup{O}{}{\prime}\Longrightarrowx\in\mp@subsup{O}{}{\prime}\Longrightarrow\exists\mp@subsup{B}{}{\prime}\inB.x\in\mp@subsup{B}{}{\prime}\wedge\mp@subsup{B}{}{\prime}\subseteq\mp@subsup{O}{}{\prime
    shows topological-basis B
    using assms by (subst topological-basis-iff) auto
lemma topological-basisE:
    fixes O}\mp@subsup{O}{}{\prime
    assumes topological-basis B
    assumes open }\mp@subsup{O}{}{\prime
    assumes }x\in\mp@subsup{O}{}{\prime
    obtains }\mp@subsup{B}{}{\prime}\mathrm{ where }\mp@subsup{B}{}{\prime}\inBx\in\mp@subsup{B}{}{\prime}\mp@subsup{B}{}{\prime}\subseteq\mp@subsup{O}{}{\prime
proof atomize-elim
    from assms have }\\mp@subsup{B}{}{\prime}.\mp@subsup{B}{}{\prime}\inB\Longrightarrow\mathrm{ open B' by (simp add: topological-basis-def)
    with topological-basis-iff assms
    show }\exists\mp@subsup{B}{}{\prime}.\mp@subsup{B}{}{\prime}\inB\wedgex\in\mp@subsup{B}{}{\prime}\wedge\mp@subsup{B}{}{\prime}\subseteq\mp@subsup{O}{}{\prime}\mathrm{ using assms by (simp add: Bex-def)
qed
end
```


2.4 Enumerable Basis

```
class enumerable-basis \(=\) topological-space +
    assumes ex-enum-basis: \existsf::nat =>'a set. topological-basis (range f)
begin
definition enum-basis'::nat }=>\mp@subsup{}{}{\prime}\mathrm{ 'a set
    where enum-basis' = Eps (topological-basis o range)
lemma enumerable-basis': topological-basis (range enum-basis')
    using ex-enum-basis
    unfolding enum-basis'-def o-def
    by (rule someI-ex)
```

```
lemmas enumerable-basisE' = topological-basisE[OF enumerable-basis']
```

Extend enumeration of basis, such that it is closed under (finite) Union

```
definition enum-basis::nat }=>\mp@subsup{}{}{\prime}\mathrm{ 'a set
    where enum-basis n = \(set (map enum-basis'(from-nat n)))
lemma
    open-enum-basis:
    assumes B}\in\mathrm{ range enum-basis
    shows open B
    using assms enumerable-basis'
    by (force simp add: topological-basis-def enum-basis-def)
lemma enumerable-basis: topological-basis (range enum-basis)
proof (rule topological-basisI[OF open-enum-basis])
    fix }\mp@subsup{O}{}{\prime}x\mathrm{ assume open }\mp@subsup{O}{}{\prime}x\in\mp@subsup{O}{}{\prime
    from topological-basisE[OF enumerable-basis' this] guess B'. note }\mp@subsup{B}{}{\prime}=thi
    moreover then obtain n where B' = enum-basis' }n\mathrm{ by auto
    moreover hence }\mp@subsup{B}{}{\prime}=\mathrm{ enum-basis (to-nat [n]) by (auto simp: enum-basis-def)
    ultimately show }\exists\mp@subsup{B}{}{\prime}\in\mathrm{ range enum-basis. }x\in\mp@subsup{B}{}{\prime}\wedge\mp@subsup{B}{}{\prime}\subseteq\mp@subsup{O}{}{\prime}\mathrm{ by blast
qed
lemmas enumerable-basisE = topological-basisE[OF enumerable-basis]
lemma open-enumerable-basis-ex:
    assumes open X
    shows }\existsN.X=(\bigcupn\inN. enum-basis n
proof -
    from enumerable-basis assms obtain }\mp@subsup{B}{}{\prime}\mathrm{ where }\mp@subsup{B}{}{\prime}\subseteq\mathrm{ range enum-basis }X
Union B'
        unfolding topological-basis-def by blast
    hence Union B'=(\bigcupn\in{n. enum-basis n }\in\mp@subsup{B}{}{\prime}}\mathrm{ . enum-basis n) by auto
    with }\langleX=\mathrm{ Union }\mp@subsup{B}{}{\prime}\mathrm{ \ show ?thesis by blast
qed
lemma open-enumerable-basisE:
    assumes open X
    obtains N where X = (\bigcupn\inN. enum-basis n)
    using assms open-enumerable-basis-ex by (atomize-elim) simp
```

Construction of an Increasing Sequence Approximating Open Sets
lemma empty-basisI[intro]: $\} \in$ range enum-basis
proof
show $\}=$ enum-basis (to-nat ([]::nat list)) by (simp add: enum-basis-def)
qed rule
lemma union-basisI[intro]:
assumes $A \in$ range enum-basis $B \in$ range enum-basis

```
    shows }A\cupB\in\mathrm{ range enum-basis
proof -
    from assms obtain a b where A\cupB=enum-basis a \cup enum-basis b by auto
    also have ...= enum-basis (to-nat (from-nat a @ from-nat b::nat list))
            by (simp add: enum-basis-def)
    finally show ?thesis by simp
qed
lemma open-imp-Union-of-incseq:
    assumes open X
    shows \existsS. incseq S ^(\bigcupj.S j)=X ^ range S\subseteq range enum-basis
proof -
    from open-enumerable-basis-ex[OF <open X`] obtain N where N: X=(\bigcupn\inN.
enum-basis n) by auto
    hence }X:X=(\bigcupn\mathrm{ . if n }\inN\mathrm{ then enum-basis n else {}) by (auto split:
split-if-asm)
    def S \equivnat-rec (if 0 }\inN\mathrm{ then enum-basis 0 else {})
    (\lambdanS. if (Suc n) \inN then S\cup enum-basis (Suc n) else S)
    have S-simps[simp]:
        SO=(if 0 \inN then enum-basis 0 else {})
        \n.S (Suc n)=(if (Suc n) \inN then S n \cup enum-basis (Suc n) else S n)
        by (simp-all add: S-def)
    have incseq S by (rule incseq-SucI) auto
    moreover
    have (Uj.S j) = X unfolding N
    proof safe
        fix x n assume n\inNx\inenum-basis n
        hence }x\inSn\mathrm{ by (cases n) auto
        thus }x\in(\bigcupj.Sj) by aut
    next
        fix }x
        assume x GSj
        thus }x\inUNION N enum-basis by (induct j) (auto split: split-if-asm)
    qed
    moreover have range S\subseteq range enum-basis
    proof safe
        fix j show S j f range enum-basis by (induct j) auto
    qed
    ultimately show ?thesis by auto
qed
lemma open-incseqE:
    assumes open X
    obtains S where incseq S (\bigcupj.S j) = X range S \subseteq range enum-basis
    using open-imp-Union-of-incseq assms by atomize-elim
end
lemma borel-eq-sigma-enum-basis:
```

```
    sets borel = sigma-sets (space borel) (range enum-basis)
    apply (simp add: borel-def)
proof (intro sigma-sets-eqI, safe)
    fix }x::\mp@subsup{:}{}{\prime}a\mathrm{ set assume open }
    from open-enumerable-basisE[OF this] guess N .
    hence }x:x=(\bigcupn\mathrm{ . if n }\inN\mathrm{ then enum-basis n else {}) by (auto split: split-if-asm)
    also have ...\in sigma-sets UNIV (range enum-basis) by (rule Union) auto
    finally show }x\in\mathrm{ sigma-sets UNIV (range enum-basis).
next
    fix n
    have open (enum-basis n) by (rule open-enum-basis) simp
    thus enum-basis n \in sigma-sets UNIV (Collect open) by auto
qed
lemma countable-dense-set:
    shows \existsx::nat => -. \forall(y::'a::enumerable-basis set). open }y\longrightarrowy\not={}\longrightarrow(\existsn
x n \in y)
proof -
    def x \equiv\lambdan.(SOME x::'a. x 的um-basis n)
    have x:\n. enum-basis n }\not=({}::'a set)\Longrightarrowx \ < enum-basis n unfolding
x-def
            by (rule someI-ex) auto
    have }\forally.\mathrm{ open }y\longrightarrowy\not={}\longrightarrow(\existsn.xn\iny
    proof (intro allI impI)
        fix y::'a set assume open y }y\not={
        from open-enumerable-basisE[OF <open y〉] guess N . note N = this
        obtain n where n: n \inN enum-basis }n\not=({}::'a set
        proof (atomize-elim, rule ccontr, clarsimp)
            assume }\foralln.n\inN\longrightarrow\mathrm{ enum-basis n = ({}::'a set)
            hence (\bigcupn\inN. enum-basis n)=(\bigcupn\inN.{}::'a set)
                    by (intro UN-cong) auto
            hence }y={}\mathrm{ unfolding N by simp
            with }\langley\not={}\rangle\mathrm{ show False by auto
        qed
        with xN n have x n \in y by auto
        thus }\existsn.xn\iny.
    qed
    thus ?thesis by blast
qed
lemma countable-dense-setE:
    obtains x :: nat => -
    where \bigwedge(y::'a::enumerable-basis set). open }y\Longrightarrowy\not={}\Longrightarrow\existsn.x n\in
    using countable-dense-set by blast
```


2.5 Polish Spaces

Textbooks define Polish spaces as completely metrizable. We assume the topology to be complete for a given metric.

```
class polish-space = complete-space + enumerable-basis
```

TODO: Rules in Topology-Euclidean-Space should be proved in the ordered-euclidean-space locale! Then we can use subclass instead of instance.

```
instance ordered-euclidean-space}\subseteq\mathrm{ polish-space
proof
    def to-cube \equiv\lambda(a,b). {Chi (real-of-rat \circ op! a)<..<Chi (real-of-rat \circ op!
b)}::'a set
    def enum \equiv\lambdan. (to-cube (from-nat n)::'a set)
    have Ball (range enum) open unfolding enum-def
    proof safe
        fix }n\mathrm{ show open (to-cube (from-nat n))
            by (cases from-nat n::rat list }\times\mathrm{ rat list)
                    (simp add: open-interval to-cube-def)
    qed
    moreover have (\forallx. open }x\longrightarrow(\exists\mp@subsup{B}{}{\prime}\subseteq\mathrm{ range enum. }\\mp@subsup{B}{}{\prime}=x)
    proof safe
        fix x::'a set assume open x
        def lists \equiv{(a,b)|a b. to-cube (a,b)\subseteqx}
        from open-UNION[OF <open x]
        have U(to-cube'lists) = x unfolding lists-def to-cube-def
        by simp
        moreover have to-cube 'lists \subseteq range enum
        proof
            fix x}\mathrm{ assume }x\in\mathrm{ to-cube` lists
            then obtain l where l\in lists x= to-cube l by auto
            hence }x=\mathrm{ enum (to-nat l) by (simp add: to-cube-def enum-def)
            thus }x\in\mathrm{ range enum by simp
        qed
        ultimately
        show }\exists\mp@subsup{B}{}{\prime}\subseteq\mathrm{ range enum. }\cup\mp@subsup{B}{}{\prime}=x\mathrm{ by blast
    qed
    ultimately
    show \existsf::nat='a set. topological-basis (range f) unfolding topological-basis-def
by blast
qed
instantiation nat::topological-space
begin
definition open-nat::nat set }=>\mathrm{ bool
    where open-nat s = True
instance proof qed (auto simp: open-nat-def)
end
instantiation nat::metric-space
begin
```

```
definition dist-nat::nat \(\Rightarrow\) nat \(\Rightarrow\) real
    where dist-nat \(n m=(\) if \(n=m\) then 0 else 1\()\)
instance proof qed (auto simp: open-nat-def dist-nat-def intro: exI[where \(x=1]\) )
end
instance nat::complete-space
proof
    fix \(X\) ::nat \(\Rightarrow\) nat assume Cauchy \(X\)
    hence \(\exists n . \forall m \geq n . X m=X n\)
        by (force simp: dist-nat-def Cauchy-def split: split-if-asm dest:spec[where \(x=1]\) )
    then guess \(n\)..
    thus convergent \(X\)
        apply (intro convergent \(I[\) where \(L=X n]\) tendstoI)
        unfolding eventually-sequentially dist-nat-def
        apply (intro exI[where \(x=n]\) )
        apply (intro allI)
        apply (drule-tac \(x=n a\) in spec)
        apply simp
        done
qed
instance nat::polish-space
proof
    have topological-basis (range ( \(\lambda n:: n a t .\{n\})\) )
        by (intro topological-basisI) (auto simp: open-nat-def)
    thus \(\exists f::\) nat \(\Rightarrow\) nat set. topological-basis (range f) by blast
qed
```


2.6 Regularity of Measures

```
lemma ereal-approx-SUP:
fixes \(x\) ::ereal
assumes \(A\)-notempty: \(A \neq\{ \}\)
assumes \(f\)-bound: \(\bigwedge i . i \in A \Longrightarrow f i \leq x\)
assumes \(f\)-fin: \(\bigwedge i . i \in A \Longrightarrow f i \neq \infty\)
assumes \(f\)-nonneg: \(\bigwedge i .0 \leq f i\)
assumes approx: \(\bigwedge e .(e::\) real \()>0 \Longrightarrow \exists i \in A . x \leq f i+e\)
shows \(x=(S U P i: A . f i)\)
proof (subst eq-commute, rule ereal-SUPI)
show \(\wedge i . i \in A \Longrightarrow f i \leq x\) using \(f\)-bound by simp
next
fix \(y::\) ereal assume \(f\)-le- \(y:\left(\bigwedge i::^{\prime} a . i \in A \Longrightarrow f i \leq y\right)\)
with \(A\)-notempty f-nonneg have \(y \geq 0\) by auto (metis order-trans)
show \(x \leq y\)
proof (rule ccontr)
assume \(\neg x \leq y\) hence \(x>y\) by simp
hence \(y\)-fin: \(|y| \neq \infty\) using \(\langle y \geq 0\rangle\) by auto
have \(x\)-fin: \(|x| \neq \infty\) using \(\langle x>y\rangle\) f-fin approx[where \(e=1]\) by auto
```

```
    def e\equivreal ((x-y)/ 2)
    have e:x>y+ee>0 using\langlex>y>y-fin x-fin by (auto simp:e-def
field-simps)
    note e(1)
    also from approx[OF}\langlee>0\rangle] obtain i where i:i\inAx\leqfi+e by blas
    note i(2)
    finally have }y<fi\mathrm{ using y-fin f-fin by (metis add-right-mono linorder-not-le)
    moreover have fi\leqy by (rule f-le-y)fact
    ultimately show False by simp
    qed
qed
lemma ereal-approx-INF:
    fixes x::ereal
    assumes A-notempty: }A\not={
    assumes f-bound: \i. i\inA\Longrightarrowx\leqfi
    assumes f-fin: \i.i\inA\Longrightarrowfi\not=\infty
    assumes f-nonneg: \i. 0 \leqfi
    assumes approx: \e. (e::real)>0\Longrightarrow\existsi\inA.fi\leqx+e
    shows }x=(INF i:A.fi
proof (subst eq-commute, rule ereal-INFI)
    show }\i.i\inA\Longrightarrowx\leqfi\mp@code{using f-bound by simp
next
    fix y :: ereal assume f-le-y: (\i::'a. i\inA\Longrightarrowy\leqfi)
    with }A\mathrm{ -notempty f-fin have }y\not=\infty\mathrm{ by force
    show y \leqx
    proof (rule ccontr)
    assume }\negy\leqx\mathrm{ hence }y>x\mathrm{ by simp hence }y\not=-\infty\mathrm{ by auto
    hence }y\mathrm{ -fin: }|y|\not=\infty\mathrm{ using ( }y\not=\infty\mathrm{ ) by auto
            have x-fin: }|x|\not=\infty\mathrm{ using <y>x>f-fin f-nonneg approx[where e=1]
A-notempty
            apply auto by (metis ereal-infty-less-eq(2) f-le-y)
    def e\equiv\operatorname{real}((y-x)/2)
        have e:y>x +e e>0 using <y>x\rangle y-fin x-fin by (auto simp: e-def
field-simps)
    from approx[OF \langlee> 0\] obtain i where i:i\inAx+e\geqfi}\mathrm{ by blast
    note i(2)
    also note e(1)
    finally have y>fi}\mathrm{ .
    moreover have y\leqfi}\mathrm{ by (rule f-le-y) fact
    ultimately show False by simp
    qed
qed
lemma INF-approx-ereal:
    fixes }x::\mathrm{ ereal and e::real
    assumes e>0
    assumes INF:x=(INF i:A.fi)
    assumes }|x|\not=
```

shows $\exists i \in A . f i<x+e$
proof (rule ccontr, clarsimp)
assume $\forall i \in A . \neg f i<x+e$
moreover
from INF have $\bigwedge y .(\bigwedge i . i \in A \Longrightarrow y \leq f i) \Longrightarrow y \leq x$ by (auto intro:
INF-greatest)
ultimately
have (INF i : A. $f i)=x+e$ using $\langle e>0\rangle$
by (intro ereal-INFI)
(force, metis add.comm-neutral add-left-mono ereal-less(1)
linorder-not-le not-less-iff-gr-or-eq)
thus False using assms by auto
qed
lemma SUP-approx-ereal:
fixes $x:$:ereal and $e:$:real
assumes $e>0$
assumes $S U P: x=(S U P i: A . f i)$
assumes $|x| \neq \infty$
shows $\exists i \in A . x \leq f i+e$
proof (rule ccontr, clarsimp)
assume $\forall i \in A$. $\neg x \leq f i+e$
moreover
from $S U P$ have $\bigwedge y .(\bigwedge i . i \in A \Longrightarrow f i \leq y) \Longrightarrow y \geq x$ by (auto intro: SUP-least)
ultimately
have (SUP i : A. $f i)=x-e$ using $\langle e>0\rangle\langle | x|\neq \infty\rangle$
by (intro ereal-SUPI)
(metis PInfty-neq-ereal(2) abs-ereal.simps(1) ereal-minus-le linorder-linear, metis ereal-between(1) ereal-less(2) less-eq-ereal-def order-trans)
thus False using assms by auto
qed
lemma
fixes $M::{ }^{\prime} a::$ polish-space measure
assumes $s b$: sets $M=$ sets borel
assumes emeasure $M($ space $M) \neq \infty$
assumes $B \in$ sets borel
shows inner-regular: emeasure $M B=$
(SUP $K:\{K . K \subseteq B \wedge$ compact $K\}$. emeasure $M K$) (is?inner B)
and outer-regular: emeasure $M B=$
(INF $U:\{U . B \subseteq U \wedge$ open $U\}$. emeasure $M U$) (is ?outer B)
proof -
have Us: UNIV = space M by (metis assms(1) sets-eq-imp-space-eq space-borel)
hence $s U$: space $M=U N I V$ by simp
interpret finite-measure M by rule fact
have approx-inner: $\bigwedge A . A \in$ sets $M \Longrightarrow$
($\bigwedge e . e>0 \Longrightarrow \exists K . K \subseteq A \wedge$ compact $K \wedge$ emeasure $M A \leq$ emeasure $M K$ + ereal $e) \Longrightarrow$?inner A
by (rule ereal-approx-SUP)
(force intro!: emeasure-mono simp: compact-imp-closed emeasure-eq-measure)+ have approx-outer: $\bigwedge A . A \in$ sets $M \Longrightarrow$
$(\bigwedge e . e>0 \Longrightarrow \exists B . A \subseteq B \wedge$ open $B \wedge$ emeasure $M B \leq$ emeasure $M A+$ ereal $e) \Longrightarrow$?outer A
by (rule ereal-approx-INF)
(force intro!: emeasure-mono simp: emeasure-eq-measure sb)+
from countable-dense-setE guess $x:: n a t \Rightarrow{ }^{\prime} a$. note $x=$ this \{
fix $r:$:real assume $r>0$ hence $\bigwedge y$. open (ball y r) $\bigwedge y$. ball y $r \neq\{ \}$ by auto
with $x[O F$ this]
have x : space $M=(\bigcup n$. cball $(x n) r)$
by (auto simp add: sU) (metis dist-commute order-less-imp-le)
have $(\lambda k$. emeasure $M(\bigcup n \in\{0 . . k\}$. cball $(x n) r))---->M(\bigcup k .(\bigcup n \in\{0 . . k\}$. cball (x n) r))
by (rule Lim-emeasure-incseq)
(auto intro!: borel-closed bexI simp: closed-cball incseq-def Us sb)
also have $(\bigcup k$. $(\bigcup n \in\{0 . . k\}$. cball $(x n) r))=$ space M
unfolding x by force
finally have $(\lambda k . M(\bigcup n \in\{0 . . k\}$. cball $(x n) r))---->M($ space $M)$.
$\}$ note M-space $=$ this
\{
fix e ::real and n :: nat assume $e>0 n>0$
hence $1 / n>0 e * 2$ powr $-n>0$ by (auto intro: mult-pos-pos)
from M-space[OF $\langle 1 / n>0\rangle$]
have $(\lambda k$. measure $M(\bigcup i \in\{0 . . k\}$. cball (xi) $(1 /$ real $n)))---->$ measure
M (space M)
unfolding emeasure-eq-measure by simp
from metric-LIMSEQ-D[OF this $\langle 0<e * 2$ powr $-n\rangle]$
obtain k where dist (measure $M(\bigcup i \in\{0 \ldots k\}$.cball $(x i)(1 /$ real $n))$) (measure
$M($ space $M))<$
$e * 2$ powr $-n$
by auto
hence measure $M(\bigcup i \in\{0 . . k\}$. cball $(x i)(1 /$ real $n)) \geq$ measure M (space $M)-e * 2$ powr -real n
by (auto simp: dist-real-def)
hence $\exists k$. measure $M(\bigcup i \in\{0 . . k\}$. cball $(x i)(1 /$ real $n)) \geq$
measure $M($ space $M)-e * 2$ powr - real n..
\} note $k=$ this
hence $\forall e \in\{0<..\} . \forall(n:: n a t) \in\{0<..\} . \exists k$.
measure $M(\bigcup i \in\{0 . . k\}$. cball $(x i)(1 /$ real $n)) \geq$ measure $M($ space $M)-e *$
2 powr - real n
by blast
then obtain k where $k: \forall e \in\{0<..\} . \forall n \in\{0<.$.$\} . measure M$ (space M) $-e *$ 2 powr - real ($n::$ nat)
\leq measure $M(\bigcup i \in\{0 . . k$ e $n\}$.cball $(x i)(1 / n))$
apply atomize-elim unfolding bchoice-iff .
hence k : $\bigwedge e n . e>0 \Longrightarrow n>0 \Longrightarrow$ measure M (space $M)-e * 2$ powr $-n$ \leq measure $M(\bigcup i \in\{0 . . k$ e $n\}$.cball $(x i)(1 / n))$
unfolding Ball-def by blast
have approx-space:
\e. $e>0 \Longrightarrow$
$\exists K \in\{K . K \subseteq$ space $M \wedge$ compact $K\}$. emeasure $M($ space $M) \leq$ emeasure
$M K+$ ereal e

$$
\text { (is } \wedge e .-\Longrightarrow \text { ?thesis } e \text {) }
$$

proof -
fix $e::$ real assume $e>0$
$\operatorname{def} B \equiv \lambda n$. $\bigcup i \in\{0 . . k$ e (Suc n) $\}$. cball (xi) (1/Suc n)
have $\bigwedge n$. closed ($B n$) by (auto simp: B-def closed-cball)
hence $[$ simp]: $\bigwedge n . B n \in$ sets M by (simp add: sb)
from $k[O F\langle e>0\rangle$ zero-less-Suc]
have $\bigwedge n$. measure $M($ space $M)$ - measure $M(B n) \leq e * 2$ powr - real $(S u c$
n)
by (simp add: algebra-simps B-def finite-measure-compl)
hence B-compl-le: $\bigwedge n$::nat. measure $M($ space $M-B n) \leq e * 2$ powr - real (Suc n)
by (simp add: finite-measure-compl)
def $K \equiv \bigcap n . B n$
from 〈closed ($B-$) > have closed K by (auto simp: K-def)
hence $[$ simp $]: K \in$ sets M by (simp add: sb)
have measure M (space M) - measure $M K=$ measure M (space $M-K$)
by (simp add: finite-measure-compl)
also have $\ldots=$ emeasure $M(\bigcup n$. space $M-B n)$ by (auto simp: K-def
emeasure-eq-measure)
also have $\ldots \leq\left(\sum n\right.$. emeasure $M($ space $\left.M-B n)\right)$
by (rule emeasure-subadditive-countably) (auto simp: summable-def)
also have $\ldots \leq\left(\sum n\right.$. ereal $(e * 2$ powr - real $($ Suc $\left.n))\right)$
using B-compl-le by (intro suminf-le-pos) (simp-all add: measure-nonneg
emeasure-eq-measure)
also have $\ldots \leq\left(\sum n\right.$. ereal $\left.\left(e *(1 / 2){ }^{\wedge} S u c n\right)\right)$
by (simp add: powr-minus inverse-eq-divide powr-realpow field-simps power-divide)
also have $\ldots=\left(\sum n\right.$. ereal $e *\left((1 / 2)^{\wedge}\right.$ Suc n) $)$
unfolding times-ereal.simps[symmetric] ereal-power[symmetric] one-ereal-def
numeral-eq-ereal
by simp
also have $\ldots=$ ereal $e *\left(\sum n .\left((1 / 2)^{\wedge} S u c n\right)\right)$
by (rule suminf-cmult-ereal) (auto simp: $\langle 0<e\rangle$ less-imp-le)
also have $\ldots=e$ unfolding suminf-half-series-ereal by simp
finally have measure M (space $M) \leq$ measure $M K+e$ by simp
hence emeasure M (space $M) \leq$ emeasure $M K+e$ by (simp add: emeasure-eq-measure)
moreover have compact K
unfolding compact-eq-totally-bounded
proof safe
show complete K using (closed K 〉 by (simp add: complete-eq-closed)
fix $e^{\prime}:$:real assume $0<e^{\prime}$
from pos-approach-nat $[O F$ this $]$ guess n. note $n=$ this
let $? k=x$ ' $\{0 . . k e($ Suc $n)\}$
have finite? k by simp
moreover have $K \subseteq \bigcup\left(\lambda x \text { ．ball } x e^{\prime}\right)^{\prime}$ ？k unfolding K－def B－def using n by force
ultimately show $\exists k$ ．finite $k \wedge K \subseteq \bigcup\left(\lambda x \text { ．ball } x e^{\prime}\right)^{\prime} k$ by blast
qed
ultimately
show ？thesis e by（auto simp：sU）

qed

have closed－in－$D: \bigwedge A$ ．closed $A \Longrightarrow$ ？inner $A \wedge$ ？outer A proof
fix $A::^{\prime} a$ set assume closed A hence $A \in$ sets borel by（simp add：compact－imp－closed）
hence $[$ simp $]: A \in$ sets M by（simp add：sb）
show ？inner A
proof（rule approx－inner）
fix $e::$ real assume $e>0$
from approx－space［OF this］obtain K where
$K: K \subseteq$ space M compact K emeasure $M($ space $M) \leq$ emeasure $M K+e$
by（auto simp：emeasure－eq－measure）
hence $[$ simp $]: K \in$ sets M by（simp add：sb compact－imp－closed）
have $M A-M(A \cap K)=M(A \cup K)-M K$ by（simp add：emeasure－eq－measure measure－union）
also have $\ldots \leq M($ space $M)-M K$
by（simp add：emeasure－eq－measure sU sb finite－measure－mono）
also have $\ldots \leq e$ using K by（simp add：emeasure－eq－measure）
finally have emeasure $M A \leq$ emeasure $M(A \cap K)+$ ereal e by（simp add： emeasure－eq－measure）
moreover have $A \cap K \subseteq A$ compact $(A \cap K)$ using 〈closed A 〉＜compact K 〉 by auto
ultimately show $\exists K \subseteq A$ ．compact $K \wedge$ emeasure $M A \leq$ emeasure $M K$ + ereal e
by blast
qed simp
show ？outer A
proof cases
assume $A \neq\{ \}$
let $? G=\lambda d .\{x$ ．infdist $x A<d\}$
\｛
fix d
have ？$G d=(\lambda x$ ．infdist $x A)-‘\{. .<d\}$ by auto
also have open ．．．using continuous－infdist［OF $\langle A \neq\{ \}\rangle]$
by（intro continuous－open－vimage）auto
finally have open（？$G d)$ ．
\} note open- $G=$ this
from in－closed－iff－infdist－zero $[O F\langle$ closed $A\rangle\langle A \neq\{ \}\rangle]$
have $A=\{x$ ．infdist $x A=0\}$ by auto
also have $\ldots=(\bigcap i$ ．？$G(1 /$ real（Suc i））$)$
proof（auto，rule ccontr）
fix x
assume infdist $x A \neq 0$
hence pos：infdist $x A>0$ using infdist－nonneg $[O F\langle A \neq\{ \}\rangle$ ，of $x]$ by
simp
from pos-approach-nat[OF this] guess n.
moreover
assume $\forall i$. infdist $x A<1 / \operatorname{real}$ (Suc i)
hence infdist $x A<1 /$ real (Suc n) by auto
ultimately show False by simp
qed
also have $M \ldots=(\operatorname{INF} n$. emeasure $M(? G(1 / \operatorname{real}($ Suc $n))))$
proof (rule INF-emeasure-decseq[symmetric], safe)
fix i ::nat
from open-G[of $1 / \operatorname{real}$ (Suc i)]
show ? $G(1 / \operatorname{real}($ Suc $i)) \in$ sets M by (simp add: sb)
next
show decseq (λi. $\{x$. infdist $x A<1 /$ real (Suc $i)\}$)
by (auto intro: less-trans intro!: divide-strict-left-mono mult-pos-pos simp: decseq-def le-eq-less-or-eq)
qed simp
finally
have emeasure $M A=(I N F n$. emeasure $M\{x$. infdist $x A<1 /$ real (Suc $n)\}$) .
moreover
have $\ldots \geq(I N F U:\{U . A \subseteq U \wedge$ open $U\}$. emeasure $M U)$
proof (intro INF-mono)
fix m
have ? $G(1 / \operatorname{real}($ Suc $m)) \in\{U . A \subseteq U \wedge$ open $U\}$ using open- G by
auto
moreover have $M(? G(1 / \operatorname{real}($ Suc $m))) \leq M(? G(1 / \operatorname{real}($ Suc $m)))$
by simp
ultimately show $\exists U \in\{U . A \subseteq U \wedge$ open $U\}$.
emeasure $M U \leq$ emeasure $M\{x$. infdist $x A<1 /$ real (Suc m) $\}$
by blast
qed
moreover
have emeasure $M A \leq(\operatorname{INF} U:\{U . A \subseteq U \wedge$ open $U\}$. emeasure $M U)$
by (rule INF-greatest) (auto intro!: emeasure-mono simp: sb)
ultimately show ?thesis by simp
qed (auto intro!: ereal-INFI)
qed
let $? D=\{B \in$ sets M. ?inner $B \wedge$?outer $B\}$
interpret dynkin: dynkin-system space M ? D
proof (rule dynkin-systemI)
have $\left\{U::{ }^{\prime} a\right.$ set. space $M \subseteq U \wedge$ open $\left.U\right\}=\{$ space $M\}$ by (auto simp add: $s U)$
hence ?outer (space M) by (simp add: min-def INF-def)
moreover
have ?inner (space M)
proof (rule ereal-approx-SUP)
fix e ::real assume $0<e$
thus $\exists K \in\{K . K \subseteq$ space $M \wedge$ compact $K\}$. emeasure M (space M) \leq
emeasure $M K+$ ereal e
by (rule approx-space)
qed (auto intro: emeasure-mono simp: sU sb intro!: exI[where $x=\{ \}]$)
ultimately show space $M \in ? D$ by (simp add: sU sb)
next
fix B assume $B \in ? D$ thus $B \subseteq$ space M by (simp add: sU)
from $\langle B \in$? $D\rangle$ have [simp]: $B \in$ sets M and ?inner B ?outer B by auto
hence inner: emeasure $M B=(S U P K:\{K . K \subseteq B \wedge$ compact $K\}$. emeasure MK)
and outer: emeasure $M B=(\operatorname{INF} U:\{U . B \subseteq U \wedge$ open $U\}$. emeasure M
$U)$ by auto
have M (space $M-B)=M($ space $M)$ - emeasure $M B$ by (auto simp: emeasure-compl)
also have $\ldots=(I N F K:\{K . K \subseteq B \wedge$ compact $K\} . M($ space $M)-M K)$ unfolding inner by (subst INFI-ereal-cminus) force+
also have $\ldots=(I N F U:\{U . U \subseteq B \wedge$ compact $U\}$. M (space $M-U)$) by (rule INF-cong) (auto simp add: emeasure-compl sb compact-imp-closed)
also have $\ldots \geq(I N F U:\{U . U \subseteq B \wedge$ closed $U\} . M($ space $M-U))$
by (rule INF-superset-mono) (auto simp add: compact-imp-closed)
also have $(I N F U:\{U . U \subseteq B \wedge$ closed $U\} . M($ space $M-U))=$
(INF $U:\{U$. space $M-B \subseteq U \wedge$ open $U\}$. emeasure $M U$)
by (subst INF-image[of λu. space $M-u$, symmetric])
(rule INF-cong, auto simp add: sU intro!: INF-cong)
finally have
(INF $U:\{U$. space $M-B \subseteq U \wedge$ open $U\}$. emeasure $M U) \leq$ emeasure M (space $M-B$).
moreover have
(INF $U:\{U$. space $M-B \subseteq U \wedge$ open $U\}$. emeasure $M U) \geq$ emeasure M (space $M-B$)
by (auto simp: sb sU intro!: INF-greatest emeasure-mono)
ultimately have ? outer (space $M-B$) by simp
moreover
\{
have $M($ space $M-B)=M($ space $M)$ - emeasure $M B$ by (auto simp: emeasure-compl)
also have $\ldots=(S U P U:\{U . B \subseteq U \wedge$ open $U\} . M($ space $M)-M U)$
unfolding outer by (subst SUPR-ereal-cminus) auto
also have $\ldots=(S U P U:\{U . B \subseteq U \wedge$ open $U\} . M($ space $M-U))$
by (rule SUP-cong) (auto simp add: emeasure-compl sb compact-imp-closed)
also have $\ldots=(S U P K:\{K . K \subseteq$ space $M-B \wedge$ closed $K\}$. emeasure M
K)
by (subst SUP-image $[$ of λu. space $M-u$, symmetric $]$)
(rule SUP-cong, auto simp: sU)
also have $\ldots=(S U P K:\{K . K \subseteq$ space $M-B \wedge$ compact $K\}$. emeasure MK)
proof (safe intro!: antisym SUP-least)
fix K assume closed $K K \subseteq$ space $M-B$
from closed-in- $D[O F$ (closed K 〉]
have K-inner: emeasure $M K=(S U P K:\{K a . K a \subseteq K \wedge$ compact $K a\}$.
emeasure M K) by simp
show emeasure $M K \leq(S U P K:\{K . K \subseteq$ space $M-B \wedge$ compact $K\}$. emeasure $M K$)
unfolding K-inner using $\langle K \subseteq$ space $M-B\rangle$
by (auto intro!: SUP-upper SUP-least)
qed (fastforce intro!: SUP-least SUP-upper simp: compact-imp-closed)
finally have ?inner (space $M-B$).
\} hence ?inner (space $M-B$).
ultimately show space $M-B \in ? D$ by auto
next
fix D :: nat \Rightarrow -
assume range $D \subseteq$? D hence range $D \subseteq$ sets M by auto
moreover assume disjoint-family D
ultimately have $M[$ symmetric $]:\left(\sum i . M(D i)\right)=M(\bigcup i . D i)$ by (rule suminf-emeasure)
also have $\left(\lambda n . \sum i \in\{0 . .<n\} . M(D i)\right)---->\left(\sum i . M(D i)\right)$
by (intro summable-sumr-LIMSEQ-suminf summable-ereal-pos emeasure-nonneg)
finally have measure-LIMSEQ: $\left(\lambda n . \sum i=0 . .<n\right.$. measure $\left.M(D i)\right)--->$ measure $M(\bigcup i . D i)$
by (simp add: emeasure-eq-measure)
have $(\bigcup i . D i) \in$ sets M using \langle range $D \subseteq$ sets M by auto
moreover
hence ?inner $(\bigcup i . D i)$
proof (rule approx-inner)
fix e :: real assume $e>0$
with measure-LIMSEQ
have $\exists n o . \forall n \geq n o . \mid\left(\sum i=0 . .<n\right.$. measure $\left.M(D i)\right)$-measure $M(\bigcup x . D$ $x) \mid<e / 2$
by (auto simp: LIMSEQ-def dist-real-def simp del: less-divide-eq-numeral1)
hence $\exists n 0 . \mid\left(\sum i=0 . .<n 0\right.$. measure $\left.M(D i)\right)-$ measure $M(\bigcup x . D x) \mid<$ e/2 by auto
then obtain $n 0$ where $n 0: \mid\left(\sum i=0 . .<n 0\right.$. measure $\left.M(D i)\right)$ - measure $M(\bigcup i . D i) \mid<e / \mathcal{Z}$
unfolding choice-iff by blast
have ereal $\left(\sum i=0 . .<n 0\right.$. measure $\left.M(D i)\right)=\left(\sum i=0 . .<n 0 . M(D i)\right)$
by (auto simp add: emeasure-eq-measure)
also have $\ldots=\left(\sum i<n 0 . M(D i)\right)$ by (rule setsum-cong) auto
also have $\ldots \leq\left(\sum i . M(D i)\right)$ by (rule suminf-upper) (auto simp: emeasure-nonneg)
also have $\ldots=M(\bigcup i . D i)$ by (simp add: M)
also have $\ldots=$ measure $M(\bigcup i . D i)$ by (simp add: emeasure-eq-measure)
finally have $n 0$: measure $M(\bigcup i . D i)-\left(\sum i=0 . .<n 0\right.$. measure $\left.M(D i)\right)$ $<e / 2$
using n0 by auto
have $\forall i . \exists K . K \subseteq D i \wedge$ compact $K \wedge$ emeasure $M(D i) \leq$ emeasure $M K$ $+e /(2 *$ Suc n0 $)$
proof
fix i
from $\langle 0<e\rangle$ have $0<e /(2 *$ Suc n0) by (auto intro: divide-pos-pos)
have emeasure $M(D i)=(S U P K:\{K . K \subseteq(D i) \wedge$ compact $K\}$. emeasure
using 〈range $D \subseteq$? D〉 by blast
from SUP-approx-ereal[OF $\langle 0<e /(2 * S u c n 0)\rangle$ this $]$
show $\exists K . K \subseteq D i \wedge$ compact $K \wedge$ emeasure $M(D i) \leq$ emeasure $M K+$ $e /(2 *$ Suc n0)
by (auto simp: emeasure-eq-measure)
qed
then obtain K where $K: \bigwedge i . K i \subseteq D i \bigwedge i$. compact $\left(\begin{array}{l}K i)\end{array}\right.$
\i. emeasure $M(D i) \leq$ emeasure $M(K i)+e /(2 *$ Suc n0)
unfolding choice-iff by blast
let $? K=\bigcup i \in\{0 . .<n 0\}$. $K i$
have disjoint-family-on $K\{0 . .<n 0\}$ using $K\langle$ disjoint-family $D\rangle$
unfolding disjoint-family-on-def by blast
hence $m K$: measure $M ? K=\left(\sum i=0 . .<n 0\right.$. measure $\left.M(K i)\right)$ using K
by (intro finite-measure-finite-Union) (auto simp: sb compact-imp-closed)
have measure $M(\bigcup i . D i)<\left(\sum i=0 . .<n 0\right.$. measure $\left.M(D i)\right)+e / 2$ using $n 0$ by simp
also have $\left(\sum i=0 . .<n 0\right.$. measure $\left.M(D i)\right) \leq\left(\sum i=0 . .<n 0\right.$. measure M $($ Ki) $+e /(2 *$ Suc n0 $))$
using K by (auto intro: setsum-mono simp: emeasure-eq-measure)
also have $\ldots=\left(\sum i=0 . .<n 0\right.$. measure $\left.M(K i)\right)+\left(\sum i=0 . .<n 0\right.$. $e /(2 * S u c ~ n 0))$
by (simp add: setsum.distrib)
also have $\ldots \leq\left(\sum i=0 . .<n 0\right.$. measure $\left.M(K i)\right)+e / 2$ using $\langle 0<e\rangle$
by (auto simp: real-of-nat-def[symmetric] field-simps intro!: mult-left-mono)
finally
have measure $M(\bigcup i . D i)<\left(\sum i=0 . .<n 0\right.$. measure $\left.M(K i)\right)+e / 2+$ e/2
by auto
hence $M(\bigcup i . D i)<M$? $K+e$ by (auto simp: $m K$ emeasure-eq-measure)
moreover
have ? $K \subseteq(\bigcup i . D i)$ using K by auto
moreover
have compact ? K using K by auto
ultimately
have ? $K \subseteq(\bigcup i . D i) \wedge$ compact ? $K \wedge$ emeasure $M(\bigcup i . D i) \leq$ emeasure M ? $K+$ ereal e by simp
thus $\exists K \subseteq \bigcup i . D i$. compact $K \wedge$ emeasure $M(\bigcup i . D i) \leq$ emeasure $M K$ + ereal e ..
qed
moreover have ?outer $(\bigcup i . D i)$
proof (rule approx-outer $[O F\langle(\bigcup i . D i) \in$ sets $M\rangle])$
fix e ::real assume $e>0$
have $\forall i::$ nat. $\exists U . D i \subseteq U \wedge$ open $U \wedge e /($ 2 powr Suc $i)>$ emeasure $M U$ - emeasure M ($D i$)
proof
fix i ::nat
from $\langle 0<e\rangle$ have $0<e /(2$ powr Suc $i)$ by (auto intro: divide-pos-pos)
have emeasure $M(D i)=(\operatorname{INF} U:\{U .(D i) \subseteq U \wedge$ open $U\}$. emeasure M

```
U)
            using <range D\subseteq? ? ` by blast
            from INF-approx-ereal[OF<0<e/(2 powr Suc i)> this]
            show \existsU.Di\subseteqU\wedge open U ^ e/(2 powr Suc i) > emeasure M U -
emeasure M (D i)
            by (auto simp: emeasure-eq-measure)
            qed
            then obtain U where U:\bigwedgei.Di\subseteqUi\bigwedgei. open (Ui)
            \i. e/(2 powr Suc i) > emeasure M (U i) - emeasure M (D i)
            unfolding choice-iff by blast
            let ?U = \bigcupi. U i
                            have M?U-M(\bigcupi.Di)=M(?U-(\bigcupi.Di)) using U<(\bigcupi.Di)\in
sets M>
            by (subst emeasure-Diff) (auto simp: sb)
                            also have \ldots\leqM(Ui.Ui-Di) using U\langlerange D\subseteq sets M〉
            by (intro emeasure-mono) (auto simp: sb intro!: countable-nat-UN Diff)
                    also have .. \leq (\sumi.M (Ui-Di)) using U \langlerange D\subseteq sets M〉
            by (intro emeasure-subadditive-countably) (auto intro!: Diff simp: sb)
                    also have \ldots\leq(\sumi. ereal e/(2 powr Suc i)) using U\langlerange D\subseteq sets M〉
            by (intro suminf-le-pos, subst emeasure-Diff)
            (auto simp: emeasure-Diff emeasure-eq-measure sb measure-nonneg intro:
less-imp-le)
                            also have .. \leq (\sumn. ereal (e*(1/2) ^Suc n))
                            by (simp add: powr-minus inverse-eq-divide powr-realpow field-simps power-divide)
                            also have ... = (\sumn. ereal e * ((1 / 2) ^ Suc n))
                            unfolding times-ereal.simps[symmetric] ereal-power[symmetric] one-ereal-def
numeral-eq-ereal
            by simp
    also have ... = ereal e * (\sumn. ((1/2) ^ Suc n))
            by (rule suminf-cmult-ereal) (auto simp: <0 < e\rangle less-imp-le)
            also have ... =e unfolding suminf-half-series-ereal by simp
            finally
            have emeasure M ?U \leq emeasure M (\bigcupi.D i) + ereal e by (simp add:
emeasure-eq-measure)
            moreover
            have (Ui.Di)\subseteq?U using U by auto
                    moreover
                    have open ?U using U by auto
                            ultimately
                            have }(\bigcupi.Di)\subseteq?U\wedge\mathrm{ open ?U ^ emeasure M ?U }\leq\mathrm{ emeasure M }(\bigcupi.
i) + ereal e by simp
                            thus \existsB.(\bigcupi.Di)\subseteqB\wedge open B ^ emeasure M B\leqemeasure M (\bigcupi.D
i) + ereal e ..
    qed
    ultimately show (\bigcupi.Di)\in?D by safe
    qed
    have sets borel = sigma-sets (space M) (Collect closed) by (simp add: borel-def-closed
sU)
    also have ... = dynkin (space M)(Collect closed)
```

```
    proof (rule sigma-eq-dynkin)
    show Collect closed \subseteq Pow (space M) using Sigma-Algebra.sets-into-space by
(auto simp: sU)
    show Int-stable (Collect closed) by (auto simp: Int-stable-def)
    qed
    also have ...\subseteq?D using closed-in-D
    by (intro dynkin.dynkin-subset) (auto simp add: compact-imp-closed sb)
    finally have sets borel \subseteq?D .
    moreover have ?D \subseteq sets borel by (auto simp: sb)
    ultimately have sets borel =?D by simp
    with assms show ?inner B and ?outer B by auto
qed
end
```

theory Fin-Map
imports Auxiliarities Polish-Space
begin

3 Finite Maps

typedef (open) ('i, 'a) finmap $\left(\left(-\Rightarrow_{F} /-\right)[22,21]\right.$ 21 $)=$
$\left\{\left(I::^{\prime} i\right.\right.$ set, $\left.f::^{\prime} i \Rightarrow{ }^{\prime} a\right)$. finite $I \wedge f \in$ extensional $\left.I\right\}$ by auto
print-theorems

3.1 Domain and Application

definition domain where domain $P=f s t($ Rep-finmap $P)$
lemma finite-domain[simp, intro]: finite (domain P)
by (cases P) (auto simp: domain-def Abs-finmap-inverse)
definition $\operatorname{proj}\left({ }_{-F}[1000] 1000\right)$ where proj $P i=$ snd $($ Rep-finmap $P) i$
declare [[coercion proj]]
lemma extensional-proj[simp, intro]: $(P)_{F} \in$ extensional (domain P)
by (cases P) (auto simp: domain-def Abs-finmap-inverse proj-def[abs-def])
lemma proj-undefined[simp, intro]: $i \notin \operatorname{domain} P \Longrightarrow P i=$ undefined using extensional-proj[of $P]$ unfolding extensional-def by auto
lemma finmap-eq-iff: $P=Q \longleftrightarrow$ (domain $P=\operatorname{domain} Q \wedge(\forall i \in \operatorname{domain} P . P i$ $=Q i)$)
by (cases P, cases Q)
(auto simp add: Abs-finmap-inject extensional-def domain-def proj-def Abs-finmap-inverse intro: extensionalityI)

3.2 Countable Finite Maps

```
instance finmap :: (countable, countable) countable
proof
    obtain mapper where mapper: \fm :: ' }a\mp@subsup{|}{F}{}\mp@subsup{}{}{\prime}b\mathrm{ b. set (mapper fm) = domain fm
        by (metis finite-list[OF finite-domain])
    have inj ( }\lambdafm.map (\lambdai. (i,(fm)\mp@subsup{)}{F}{}i))(\mathrm{ mapper fm)) (is inj ?F)
    proof (rule inj-onI)
        fix f1 f2 assume ?F f1 = ?F f2
        then have map fst (?F f1) = map fst (?F f2) by simp
        then have mapper f1 = mapper f2 by (simp add: comp-def)
        then have domain f1 = domain f2 by (simp add: mapper[symmetric])
        with 〈?F f1 = ?F f2` show f1 = f2
            unfolding <mapper f1 = mapper f2` map-eq-conv mapper
            by (simp add: finmap-eq-iff)
    qed
    then show \exists to-nat :: ' }a\mp@subsup{|}{F}{}\mp@subsup{}{}{\prime}b=>\mathrm{ nat. inj to-nat
        by (intro exI[of - to-nat ○ ?F] inj-comp) auto
qed
```


3.3 Constructor of Finite Maps

```
definition finmap-of inds f = Abs-finmap (inds, restrict f inds)
```

lemma proj-finmap-of [simp]:
assumes finite inds
shows $(\text { finmap-of inds } f)_{F}=$ restrict f inds
using assms
by (auto simp: Abs-finmap-inverse finmap-of-def proj-def)
lemma domain-finmap-of [simp]:
assumes finite inds
shows domain (finmap-of inds f) $=$ inds
using assms
by (auto simp: Abs-finmap-inverse finmap-of-def domain-def)
lemma finmap-of-eq-iff[simp]:
assumes finite i finite j
shows finmap-of $i m=$ finmap-of $j n \longleftrightarrow i=j \wedge$ restrict $m i=$ restrict $n i$
using assms
apply (auto simp: finmap-eq-iff restrict-def) by metis
lemma
finmap-of-inj-on-extensional-finite:
assumes finite K
assumes $S \subseteq$ extensional K
shows inj-on (finmap-of K) S
proof (rule inj-onI)
fix $x y:: ' a \Rightarrow$ ' b
assume finmap-of $K x=$ finmap-of $K y$

```
    hence (finmap-of K x)
    moreover
    assume x\inSy\inS hence x\in extensional K y extensional K using assms
by auto
    ultimately
    show }x=y\mathrm{ using assms by (simp add: extensional-restrict)
qed
lemma finmap-choice:
    assumes *: \bigwedgei. i }\=\exists\existsx.Pix\mathrm{ and I: finite I
    shows \existsfm.domain fm=I\wedge(\foralli\inI.Pi(fmi))
proof -
    have }\existsf.\foralli\inI.Pi(fi
    unfolding bchoice-iff[symmetric] using * by auto
    then guess f ..
    with I show ?thesis
        by (intro exI[of - finmap-of I f]) auto
qed
```


3.4 Product set of Finite Maps

This is Pi for Finite Maps, most of this is copied

```
definition \(P i^{\prime}::\) ' \(i\) set \(\Rightarrow\left({ }^{\prime} i \Rightarrow{ }^{\prime} a \operatorname{set}\right) \Rightarrow\left({ }^{\prime} i \Rightarrow_{F}{ }^{\prime} a\right)\) set where
    \(P i^{\prime} I A=\left\{P\right.\). domain \(\left.P=I \wedge\left(\forall i . i \in I \longrightarrow(P)_{F} i \in A i\right)\right\}\)
```


syntax

```
    \(-P i^{\prime}::\left[p t t r n,{ }^{\prime} a\right.\) set, \({ }^{\prime} b\) set \(]=>\left({ }^{\prime} a=>' b\right)\) set ((3PI' -:-./ -) 10)
```

syntax (xsymbols)
$-P i^{\prime}::[p t t r n, ' a$ set, $' b$ set $]=>\left({ }^{\prime} a=>' b\right)$ set $\left(\left(3 \Pi^{\prime}-\epsilon-. /-\right) 10\right)$
syntax (HTML output)
$-P i^{\prime}::\left[p t t r n,{ }^{\prime} a\right.$ set, $' b$ set $]=>\left({ }^{\prime} a=>' b\right)$ set $\left(\left(3 \Pi^{\prime}-\in-. /-\right) 10\right)$

translations

$$
P I^{\prime} x: A . B==C O N S T P i^{\prime} A(\% x . B)
$$

abbreviation

$$
\text { finmapset }::\left[{ }^{\prime} a \text { set, }{ }^{\prime} b \text { set }\right]=>\left({ }^{\prime} a \Rightarrow_{F}{ }^{\prime} b\right) \text { set }
$$

 (infixr \({ }^{\sim}>60\)) where
 \(A^{\sim}>B \equiv P i^{\prime} A(\%-. B)\)
 notation (xsymbols)
finmapset (infixr $\rightsquigarrow 60$)

3.4.1 Basic Properties of $P i^{\prime}$

lemma $P i^{\prime}-I[$ intro! $]: \operatorname{domain} f=A \Longrightarrow(\bigwedge x . x \in A \Longrightarrow f x \in B x) \Longrightarrow f \in P i^{\prime}$ A B

```
by (simp add: \(P i^{\prime}\)-def)
lemma \(P i^{\prime}-I^{\prime}[\) simp \(]\) : domain \(f=A \Longrightarrow(\bigwedge x . x \in A \longrightarrow f x \in B x) \Longrightarrow f \in P i^{\prime}\)
\(A B\)
    by (simp add:Pi'-def)
lemma finmapsetI: domain \(f=A \Longrightarrow(\bigwedge x . x \in A \Longrightarrow f x \in B) \Longrightarrow f \in A \rightsquigarrow B\)
    by (simp add: Pi-def)
lemma \(P i^{\prime}\)-mem: \(f \in P i^{\prime} A B \Longrightarrow x \in A \Longrightarrow f x \in B x\)
    by (simp add: \(P i^{\prime}\)-def)
lemma \(P i^{\prime}\)-iff: \(f \in P i^{\prime} I X \longleftrightarrow \operatorname{domain} f=I \wedge(\forall i \in I . f i \in X i)\)
    unfolding \(P i^{\prime}\)-def by auto
lemma \(P i^{\prime} E[\) elim]:
    \(f \in P i^{\prime} A B \Longrightarrow(f x \in B x \Longrightarrow \operatorname{domain} f=A \Longrightarrow Q) \Longrightarrow(x \notin A \Longrightarrow Q) \Longrightarrow\)
\(Q\)
    by (auto simp: \(P i^{\prime}\)-def)
lemma in-Pi'-cong:
    domain \(f=\) domain \(g \Longrightarrow(\bigwedge w . w \in A \Longrightarrow f w=g w) \Longrightarrow f \in P i^{\prime} A B \longleftrightarrow\)
\(g \in P i^{\prime} A B\)
    by (auto simp: \(P i^{\prime}-\) def)
lemma funcset-mem: \([|f \in A \rightsquigarrow B ; x \in A|]==>f x \in B\)
    by (simp add: \(\left.P i^{\prime}-d e f\right)\)
lemma funcset-image: \(f \in A \rightsquigarrow B==>f^{\prime} A \subseteq B\)
by auto
lemma \(P i^{\prime}\)-eq-empty \([s i m p]\) :
    assumes finite \(A\) shows \(\left(P i^{\prime} A B\right)=\{ \} \longleftrightarrow(\exists x \in A . B x=\{ \})\)
    using assms
    apply (simp add: Pi'-def, auto)
    apply (drule-tac \(x=\) finmap-of \(A(\lambda u . S O M E y . y \in B u)\) in spec, auto)
    apply (cut-tac \(P=\% y . y \in B i\) in some-eq-ex, auto)
    done
lemma Pi'-mono: \((\bigwedge x . x \in A \Longrightarrow B x \subseteq C x) \Longrightarrow P i^{\prime} A B \subseteq P i^{\prime} A C\)
    by (auto simp: \(P i^{\prime}-\)-def)
lemma \(P i\) - \(P i^{\prime}\) ' finite \(A \Longrightarrow\left(P i_{E} A B\right)=p r o j\) ' \(P i^{\prime} A B\)
    apply (auto simp: Pi'-def Pi-def extensional-def)
    apply (rule-tac \(x=\) finmap-of \(A(\) restrict \(x A)\) in image-eqI)
    apply auto
    done
```


3.5 Metric Space of Finite Maps

instantiation finmap :: (type, metric-space) metric-space
begin
definition dist-finmap where

```
    dist \(P Q=\left(\sum i \in \operatorname{domain} P \cup\right.\) domain \(\left.Q . \operatorname{dist}\left((P)_{F} i\right)\left((Q)_{F} i\right)\right)+\)
    card \(((\) domain \(P-\operatorname{domain} Q) \cup(\) domain \(Q-\operatorname{domain} P))\)
```

lemma dist-finmap-extend:
assumes finite X
shows dist $P Q=\left(\sum i \in \operatorname{domain} P \cup \operatorname{domain} Q \cup X\right.$. dist $\left.\left((P)_{F} i\right)\left((Q)_{F} i\right)\right)+$ card $(($ domain $P-$ domain $Q) \cup($ domain $Q-\operatorname{domain} P))$
unfolding dist-finmap-def add-right-cancel
using assms extensional-arb $\left[\right.$ of $\left.(P)_{F}\right]$ extensional-arb $\left[o f(Q)_{F}\right.$ domain $\left.Q\right]$
by (intro setsum-mono-zero-cong-left) auto
definition open-finmap :: (' $\left.a \Rightarrow_{F}{ }^{\prime} b\right)$ set \Rightarrow bool where open-finmap $S=(\forall x \in S . \exists e>0 . \forall y$. dist $y x<e \longrightarrow y \in S)$
lemma add-eq-zero-iff[simp]:
fixes a $b:$:real
assumes $a \geq 0 b \geq 0$
shows $a+b=0 \longleftrightarrow a=0 \wedge b=0$
using assms by auto
lemma dist-le-1-imp-domain-eq:
assumes dist $P Q<1$
shows domain $P=$ domain Q
proof -
have $0 \leq\left(\sum i \in \operatorname{domain} P \cup \operatorname{domain} Q\right.$. dist $\left.(P i)(Q i)\right)$
by (simp add: setsum-nonneg)
with assms have card (domain $P-\operatorname{domain} Q \cup(\operatorname{domain} Q-\operatorname{domain} P))=$
0
unfolding dist-finmap-def by arith
thus domain $P=$ domain Q by auto
qed
lemma dist-proj:
shows $\operatorname{dist}\left((x)_{F} i\right)\left((y)_{F} i\right) \leq \operatorname{dist} x y$
proof -
have dist $\left(\begin{array}{ll}x & i\end{array}\right)(y i)=\left(\sum i \in\{i\}\right.$. dist $\left.(x i)(y i)\right)$ by simp
also have $\ldots \leq\left(\sum i \in\right.$ domain $x \cup$ domain $y \cup\{i\}$. dist $\left.(x i)(y i)\right)$
by (intro setsum-mono2) auto
also have $\ldots \leq$ dist x y by (simp add: dist-finmap-extend $[$ of $\{i\}]$)
finally show? thesis by simp
qed
lemma open-Pi'I:
assumes open-component: $\bigwedge i . i \in I \Longrightarrow$ open $(A i)$

```
    shows open (Pi' I A)
proof (subst open-finmap-def, safe)
    fix }x\mathrm{ assume }x:x\inP\mp@subsup{i}{}{\prime}I
    hence dim-x: domain x = I by (simp add: Pi'-def)
    hence [simp]: finite I unfolding dim-x[symmetric] by simp
    have \existsei.}\foralli\inI.0<ei i\wedge(\forally.dist y (xi)<ei i\longrightarrowy\inA i
    proof (safe intro!: bchoice)
    fix i assume i: i\inI
    moreover with open-component have open (A i) by simp
    moreover have xi\inA i using xi
        by (auto simp: proj-def)
    ultimately show \existse>0.\forally. dist y (xi)<e\longrightarrowy\inAi
        using }x\mathrm{ by (auto simp: open-dist Ball-def)
    qed
    then guess ei .. note ei = this
    def es\equivei 'I
    def e\equiv if es ={} then 0.5 else min 0.5 (Min es)
    from ei have e>0 using x
    by (auto simp add: e-def es-def Pi'-def Ball-def)
    moreover have }\forally\mathrm{ . dist y x<e < y P Pi'I A
    proof (intro allI impI)
    fix }
    assume dist y x<e
    also have ...<1 by (auto simp: e-def)
    finally have domain y = domain x by (rule dist-le-1-imp-domain-eq)
    with dim-x have dims: domain }y=\mathrm{ domain }x\mathrm{ domain }x=I\mathrm{ by auto
    show y \inPi' I A
    proof
        show domain y = I using dims by simp
    next
        fix }
        assume i\inI
        have dist (y i) (x i) \leq dist y x using dims <i \inI>
            by (auto intro: dist-proj)
            also have ... <e using <dist y x <e\ dims
            by (simp add: dist-finmap-def)
        also have e\leqMin (ei`I) using dims }\langlei\inI
            by (auto simp: e-def es-def)
        also have .. . \leqei i using <i\inI` by (simp add: e-def)
        finally have dist (yi) (xi)<ei i .
        with ei<i\inI\rangle show y i\inA i by simp
        qed
    qed
    ultimately
    show \existse>0.\forally. dist y x<e\longrightarrowy\inPi'I A by blast
qed
instance
proof
```

```
    fix \(S::\left({ }^{\prime} a \Rightarrow_{F}{ }^{\prime} b\right)\) set
    show open \(S=(\forall x \in S . \exists e>0 . \forall y\). dist \(y x<e \longrightarrow y \in S)\)
    unfolding open-finmap-def ..
next
    fix \(P Q::^{\prime} a \Rightarrow_{F}{ }^{\prime} b\)
    show dist \(P Q=0 \longleftrightarrow P=Q\)
    by (auto simp: finmap-eq-iff dist-finmap-def setsum-nonneg setsum-nonneg-eq-0-iff)
next
    fix \(P Q R::^{\prime} a \Rightarrow_{F}{ }^{\prime} b\)
    let ?symdiff \(=\lambda a b\). domain \(a-\) domain \(b \cup(\) domain \(b-\) domain \(a)\)
    def \(E \equiv\) domain \(P \cup\) domain \(Q \cup\) domain \(R\)
    hence finite \(E\) by (simp add: E-def)
    have card (?symdiff \(P Q\) ) \(\leq\) card (?symdiff \(P R \cup\) ?symdiff \(Q R\) )
    by (auto intro: card-mono)
    also have \(\ldots \leq \operatorname{card}(\) ?symdiff \(P R)+\) card (?symdiff \(Q R\) )
    by (subst card-Un-Int) auto
    finally have \(\operatorname{dist} P Q \leq\left(\sum i \in E . \operatorname{dist}(P i)(R i)+\operatorname{dist}(Q i)(R i)\right)+\)
        real (card (?symdiff \(P R\) ) \(+\operatorname{card}\) (?symdiff \(Q R\) ))
        unfolding dist-finmap-extend \([O F\langle\) finite \(E\rangle]\)
        by (intro add-mono) (auto simp: E-def intro: setsum-mono dist-triangle-le)
    also have \(\ldots \leq \operatorname{dist} P R+\operatorname{dist} Q R\)
            unfolding dist-finmap-extend \([O F\langle\) finite \(E\rangle]\) by (simp add: ac-simps E-def
setsum-addf[symmetric])
    finally show dist \(P Q \leq \operatorname{dist} P R+\operatorname{dist} Q R\) by \(\operatorname{simp}\)
qed
end
lemma open-restricted-space:
    shows open \(\{m . P(\) domain \(m)\}\)
proof -
    have \(\{m . P(\) domain \(m)\}=(\bigcup i \in\) Collect \(P .\{m\). domain \(m=i\})\) by auto
    also have open ...
    proof (rule, safe, cases)
        fix \(i::^{\prime} a\) set
        assume finite \(i\)
        hence \(\{m\). domain \(m=i\}=P i^{\prime} i\left(\lambda-\right.\). UNIV) by (auto simp: \(P i^{\prime}\)-def)
        also have open ... by (auto intro: open-Pi'I simp: 〈finite \(i\rangle\) )
        finally show open \(\{m\). domain \(m=i\}\).
    next
        fix \(i::^{\prime} a\) set
        assume \(\neg\) finite \(i\) hence \(\{m\). domain \(m=i\}=\{ \}\) by auto
        also have open ... by simp
        finally show open \(\{m\). domain \(m=i\}\).
    qed
    finally show ?thesis .
qed
lemma closed-restricted-space:
```

```
    shows closed {m. P (domain m)}
proof -
    have {m. P (domain m)}=-(\bigcupi\in- Collect P.{m. domain m=i}) by
auto
    also have closed ...
    proof (rule, rule, rule, cases)
        fix i::'a set
        assume finite i
        hence {m.domain m=i}=P\mp@subsup{i}{}{\prime}}\mp@subsup{i}{}{\prime}(\lambda-.,UNIV) by (auto simp:P\mp@subsup{i}{}{\prime}-def
        also have open ... by (auto intro: open-Pi'I simp:\finite i\rangle)
        finally show open {m. domain m=i}.
    next
        fix i::'a set
        assume }\neg\mathrm{ finite i hence {m.domain m=i}={} by auto
        also have open ... by simp
        finally show open {m. domain m=i} .
    qed
    finally show ?thesis .
qed
lemma continuous-proj:
    shows continuous-on s ( }\lambdax.(x\mp@subsup{)}{F}{}i
    unfolding continuous-on-topological
proof safe
    fix x B assume x f s open B x i}\in
    let ?A = Pi' (domain x) (\lambdaj. if i=j then B else UNIV)
    have open ?A using <open B> by (auto intro: open-Pi'I)
    moreover have }x\in\mathrm{ ?A using \xi i B B by auto
    moreover have ( }\forally\ins.y\in?A\longrightarrowyi\inB
    proof (cases, safe)
        fix y assume y\ins
        assume i\not\indomain x hence undefined }\inB\mathrm{ using 〈xi i B \
            by simp
    moreover
    assume y f?A hence domain y = domain x by (simp add:Pi'-def)
    hence y i= undefined using <i\not\indomain x\rangle by simp
    ultimately
    show y i G B by simp
    qed force
    ultimately
    show }\exists\mathrm{ A. open }A\wedgex\inA\wedge(\forally\ins.y\inA\longrightarrowyi\inB)\mathrm{ by blast
qed
```


3.6 Complete Space of Finite Maps

lemma tendsto-dist-zero:

$$
\text { assumes }(\lambda i . \operatorname{dist}(f i) g)---->0
$$

shows $f---->g$
using assms by (auto simp: tendsto-iff dist-real-def)

```
lemma tendsto-dist-zero':
    assumes ( \(\lambda i\). dist \((f i) g\) ) \(---->x\)
    assumes \(0=x\)
    shows \(f---->g\)
    using assms tendsto-dist-zero by simp
lemma tendsto-finmap:
    fixes \(f:: n a t \Rightarrow\left(' i \Rightarrow_{F}\left({ }^{\prime} a::\right.\right.\) metric-space \(\left.)\right)\)
    assumes ind-f: \(\bigwedge n\). domain \((f n)=\) domain \(g\)
    assumes proj-g: \(\bigwedge i . i \in \operatorname{domain} g \Longrightarrow(\lambda n .(f n) i)---->g i\)
    shows \(f---->g\)
    apply (rule tendsto-dist-zero')
    unfolding dist-finmap-def assms
    apply (rule tendsto-intros proj- \(g \mid \operatorname{simp}\) ) +
    done
instance finmap :: (type, complete-space) complete-space
proof
    fix \(P::\) nat \(\Rightarrow{ }^{\prime} a \Rightarrow_{F}{ }^{\prime} b\)
    assume Cauchy \(P\)
    then obtain \(N d\) where \(N d: \wedge n . n \geq N d \Longrightarrow \operatorname{dist}(P n)(P N d)<1\)
        by (force simp: cauchy)
    def \(d \equiv\) domain ( \(P\) Nd)
    with \(N d\) have dim: \(\bigwedge n . n \geq N d \Longrightarrow\) domain \((P n)=d\) using dist-le-1-imp-domain-eq
by auto
    have [simp]: finite \(d\) unfolding \(d\)-def by simp
    \(\operatorname{def} p \equiv \lambda i n\). \((P n) i\)
    def \(q \equiv \lambda i . \lim (p i)\)
    \(\operatorname{def} Q \equiv\) finmap-of \(d q\)
    have \(q: \bigwedge i . i \in d \Longrightarrow q i=Q i\) by (auto simp add: \(Q\)-def Abs-finmap-inverse)
    \{
        fix \(i\) assume \(i \in d\)
        have Cauchy ( \(p i\) ) unfolding cauchy \(p\)-def
        proof safe
            fix \(e\) ::real assume \(0<e\)
            with \(\langle C a u c h y P\rangle\) obtain \(N\) where \(N: \bigwedge n . n \geq N \Longrightarrow \operatorname{dist}(P n)(P N)<\)
\(\min\) e 1
            by (force simp: cauchy min-def)
    hence \(\bigwedge n . n \geq N \Longrightarrow\) domain \((P n)=\) domain \((P N)\) using dist-le-1-imp-domain-eq
by auto
            with \(\operatorname{dim}\) have dim: \(\bigwedge n . n \geq N \Longrightarrow \operatorname{domain}(P n)=d\) by (metis
nat-le-linear)
            show \(\exists N . \forall n \geq N\). dist \(((P n) i)((P N) i)<e\)
            proof (safe intro!: exI[where \(x=N]\) )
                fix \(n\) assume \(N \leq n\) have \(N \leq N\) by simp
            have \(\operatorname{dist}((P n) i)((P N) i) \leq \operatorname{dist}(P n)(P N)\)
            using \(\operatorname{dim}[O F\langle N \leq n\rangle] \operatorname{dim}[O F\langle N \leq N\rangle]\langle i \in d\rangle\)
            by (auto intro!: dist-proj)
```

```
            also have ...<e using N[OF <N \leqn\] by simp
            finally show dist ((P n) i) ((PN) i)<e.
        qed
    qed
    hence convergent (pi) by (metis Cauchy-convergent-iff)
    hence pi----> qi unfolding q-def convergent-def by (metis limI)
    } note p=this
    have P ----> Q
    proof (rule metric-LIMSEQ-I)
        fix e::real assume 0<e
        def }\mp@subsup{e}{}{\prime}\equiv\operatorname{min}1(e/(card d + 1)
        hence 0< e' using < 0 < e` by (auto simp: e'-def intro: divide-pos-pos)
        have \existsni.\foralli\ind.\foralln\geqni i. dist (p i n) (qi)< < '
        proof (safe intro!: bchoice)
            fix }i\mathrm{ assume i i d
            from p[OF«i \in d , THEN metric-LIMSEQ-D,OF <0 < e}\
            show \exists no. \foralln\geqno. dist (pin)(qi)< < '}
    qed then guess ni .. note ni=this
    def N\equivmax Nd (Max (ni'd))
    show }\existsN.\foralln\geqN.dist (P n) Q<
    proof (safe intro!: exI[where }x=N]\mathrm{ )
            fix n assume N\leqn
            hence domain (Pn)=d domain Q =d domain (P n)=domain Q
            using dim by (simp-all add: N-def Q-def dim-def Abs-finmap-inverse)
            hence dist (P n) Q = (\sumi\ind. dist ((P n) i) (Q i)) by (simp add:
dist-finmap-def)
            also have ... \leq(\sumi\ind. e}
            proof (intro setsum-mono less-imp-le)
            fix }i\mathrm{ assume }i\in
            hence ni i\leqMax (ni'd) by simp
            also have ...\leqN by (simp add:N-def)
            also have ...\leqn using (N\leqn).
            finally
            show dist ((Pn)i) (Q i)< < '
            using ni <i\ind\rangle by (auto simp: p-def q N-def)
            qed
            also have ... = card d* e' by (simp add: real-eq-of-nat)
            also have ...<e using <0<e> by (simp add: e'-def field-simps min-def)
            finally show dist (P n) Q<e.
    qed
    qed
    thus convergent P by (auto simp: convergent-def)
qed
```


3.7 Polish Space of Finite Maps

instantiation finmap :: (countable, polish-space) polish-space begin
definition enum-basis-finmap :: nat $\Rightarrow\left({ }^{\prime} a \Rightarrow_{F}{ }^{\prime} b\right)$ set where
enum-basis-finmap $n=$
(let $m=$ from-nat $n::\left({ }^{\prime} a \Rightarrow_{F}\right.$ nat) in $P^{\prime}{ }^{\prime}($ domain $m)\left(\right.$ enum-basis $\left.\left.o(m)_{F}\right)\right)$
lemma range-enum-basis-eq:
range enum-basis-finmap $=\left\{P i^{\prime} I S \mid I S\right.$. finite $I \wedge(\forall i \in I . S i \in$ range
enum-basis)\}
proof (auto simp: enum-basis-finmap-def[abs-def])
fix $S::(' a \Rightarrow$ ' b set $)$ and I
assume $\forall i \in I . S i \in$ range enum-basis
hence $\forall i \in I$. $\exists n$. Si=enum-basis n by auto
then obtain n where n : $\forall i \in I . S i=$ enum-basis $(n i)$
unfolding bchoice-iff by blast
assume [simp]: finite I
have $\exists f m$. domain $f m=I \wedge(\forall i \in I . n i=(f m i))$
by (rule finmap-choice) auto
then obtain m where $P i^{\prime} I S=P i^{\prime}($ domain $m)($ enum-basis o $m)$
using n by (auto simp: $P i^{\prime}-d e f$)
hence $P i^{\prime} I S=\left(\right.$ let $m=$ from-nat (to-nat m) in $P i^{\prime}$ (domain m) (enum-basis - m))
by simp
thus $P i^{\prime} I S \in$ range (λ n. let $m=$ from-nat n in $P i^{\prime}$ (domain m) (enum-basis \circ m))
by blast
qed (metis finite-domain o-apply rangeI)
lemma in-enum-basis-finmapI:
assumes finite I assumes $\bigwedge i . i \in I \Longrightarrow S i \in$ range enum-basis
shows $P i^{\prime} I S \in$ range enum-basis-finmap
using assms unfolding range-enum-basis-eq by auto
lemma finmap-topological-basis:
topological-basis (range (enum-basis-finmap))
proof (subst topological-basis-iff, safe)
fix n :: nat
show open (enum-basis-finmap $n::\left({ }^{\prime} a \Rightarrow_{F}{ }^{\prime} b\right)$ set) using enumerable-basis
by (auto intro!: open-Pi'I simp: topological-basis-def enum-basis-finmap-def Let-def)
next
fix $O^{\prime}::\left({ }^{\prime} a \Rightarrow_{F}{ }^{\prime} b\right)$ set and x
assume open $O^{\prime} x \in O^{\prime}$
then obtain e where $e: e>0 \bigwedge y$. dist $y x<e \Longrightarrow y \in O^{\prime}$ unfolding
open-dist by blast
def $e^{\prime} \equiv e /(\operatorname{card}(\operatorname{domain} x)+1)$
have $\exists B$.
$\left(\forall i \in\right.$ domain $x . x i \in$ enum-basis $(B i) \wedge$ enum-basis $(B i) \subseteq$ ball $\left.(x i) e^{\prime}\right)$
proof (rule bchoice, safe)
fix i assume $i \in \operatorname{domain} x$

```
    have open (ball (xi) e') xi\in ball (xi) e' using e
    by (auto simp add: e'-def intro!: divide-pos-pos)
    from enumerable-basisE[OF this] guess b}\mp@subsup{b}{}{\prime}
    thus \existsy.xi\in enum-basis y }
        enum-basis y \subseteqball (x i) e' by auto
    qed
    then guess B .. note B = this
    def }\mp@subsup{B}{}{\prime}\equivP\mp@subsup{i}{}{\prime}(\mathrm{ domain x) (di. enum-basis (B i)::'b set)
    hence }\mp@subsup{B}{}{\prime}\in\mathrm{ range enum-basis-finmap unfolding }\mp@subsup{B}{}{\prime}\mathrm{ -def
    by (intro in-enum-basis-finmapI) auto
    moreover have }x\in\mp@subsup{B}{}{\prime}\mathrm{ unfolding }\mp@subsup{B}{}{\prime}\mathrm{ -def using B by auto
    moreover have B'\subseteq\mp@subsup{O}{}{\prime}
    proof
        fix y assume y G B' with B have domain y = domain x unfolding B'-def
        by (simp add: Pi'-def)
    show y }\in\mp@subsup{O}{}{\prime
    proof (rule e)
        have dist y x = (\sumi\indomain x. dist (yi)(xi))
            using <domain y = domain x> by (simp add: dist-finmap-def)
        also have .. . \leq (\sumi\indomain x. e')
        proof (rule setsum-mono)
            fix }i\mathrm{ assume }i\in\mathrm{ domain x
            with }\langley\in\mp@subsup{B}{}{\prime}\rangleB\mathrm{ have y i}\in\mathrm{ enum-basis (Bi)
                by (simp add: Pi'-def B'-def)
            hence y i\in ball (x i) e' using B\langledomain y = domain x\rangle\langlei\in domain x\rangle
                by force
            thus dist (y i) (x i) \leq e' by (simp add: dist-commute)
        qed
        also have ... = card (domain x)* ' ' by (simp add:real-eq-of-nat)
        also have ...<e using e by (simp add: 的'-def field-simps)
        finally show dist y x<e .
        qed
    qed
    ultimately
    show \exists\mp@subsup{B}{}{\prime}\in\mathrm{ range enum-basis-finmap. }x\in\mp@subsup{B}{}{\prime}\wedge\mp@subsup{B}{}{\prime}\subseteq\mp@subsup{O}{}{\prime}\mathrm{ by blast}
qed
lemma range-enum-basis-finmap-imp-open:
    assumes }x\in\mathrm{ range enum-basis-finmap
    shows open x
    using finmap-topological-basis assms by (auto simp: topological-basis-def)
lemma
    open-imp-ex-UNION-of-enum:
    fixes X::('}\=\mp@subsup{|}{F}{}\mp@subsup{}{}{\prime}b) se
    assumes open X assumes }X\not={
```



```
(A i) (Bi))^
    (\foralln.\foralli\inA n.(B n) i f range enum-basis) ^(\foralln. finite (A n))
```

```
proof -
    from <open X` obtain }\mp@subsup{B}{}{\prime}\mathrm{ where }\mp@subsup{B}{}{\prime}:\mp@subsup{B}{}{\prime}\subseteq\mathrm{ range enum-basis-finmap }\bigcup\mp@subsup{B}{}{\prime}=
        using finmap-topological-basis by (force simp add: topological-basis-def)
    then obtain B where B: 珤 = enum-basis-finmap ' }B\mathrm{ by (auto simp: subset-image-iff)
    show ?thesis
    proof cases
        assume B={} with B have }\mp@subsup{B}{}{\prime}={}\mathrm{ by simp hence False using B' assms
by simp
        thus ?thesis by simp
    next
        assume B}\not={}\mathrm{ then obtain b where b:b 隹 by auto
        def NA \equiv\lambdan::nat. if n }\in
            then domain ((from-nat::-列}a\mp@subsup{=>}{F}{}\mathrm{ nat) n)
            else domain ((from-nat::- }\mp@subsup{=>}{}{\prime}a\mp@subsup{=>}{F}{}\mathrm{ nat) b)
        def NB\equiv\lambdan::nat. if n }\in
            then (\lambdai.(enum-basis::nat }\mp@subsup{=>}{}{\prime}b\mathrm{ bet ) (((from-nat::-和a 秓 nat) n) i))
            else (\lambdai.(enum-basis::nat }\mp@subsup{=>}{}{\prime}b\mathrm{ bet ) (((from-nat::->'a 午F nat) b) i))
    have X = UNION UNIV (\lambdai.Pi'(NA i) (NB i)) unfolding B'(2)[symmetric]
using b
            unfolding }
            by safe
                (auto simp add: NA-def NB-def enum-basis-finmap-def Let-def o-def split:
split-if-asm)
    moreover
    have ( }\foralln.\foralli\inNA n.(NB n) i\in range enum-basis
            using enumerable-basis by (auto simp: topological-basis-def NA-def NB-def)
    moreover have ( }\foralln\mathrm{ . finite (NA n)) by (simp add: NA-def)
    ultimately show ?thesis by auto
    qed
qed
lemma
    open-imp-ex-UNION:
    fixes X::(' }a\mp@subsup{|}{F}{F}\mp@subsup{}{}{\prime}b) se
    assumes open X assumes }X\not={
    shows \existsA::nat }\mp@subsup{=>}{}{\prime}\mathrm{ 'a set. ヨB::nat }=>(\mp@subsup{}{}{\prime}a=>'b set).X = UNION UNIV (\lambdai. Pi''
(A i) (B i))^
    (\foralln.\foralli\inA n. open ((B n) i)) ^( }\forall\mathrm{ n. finite (A n))
    using open-imp-ex-UNION-of-enum[OF assms]
    apply auto
    apply (rule-tac x = A in exI)
    apply (rule-tac x = B in exI)
    apply (auto simp: open-enum-basis)
    done
```


lemma

```
open－basisE：
assumes open \(X\) assumes \(X \neq\{ \}\)
obtains \(A:: n a t \Rightarrow{ }^{\prime} a\) set and \(B:: n a t \Rightarrow\left({ }^{\prime} a \Rightarrow\right.\)＇\(b\) set \()\) where
```



```
finite (A n)
using open-imp-ex-UNION[OF assms] by auto
lemma
    open-basis-of-enumE:
    assumes open X assumes X}\not={
    obtains A::nat }\mp@subsup{=>}{}{\prime}\mathrm{ 'a set and }B::nat=>('a=>'b set) wher
    X = UNION UNIV (\lambdai. Pi'(A i) (B i)) \n i. i\inA n \Longrightarrow (B n) i f range
enum-basis
    \n.finite (A n)
using open-imp-ex-UNION-of-enum[OF assms] by auto
instance proof qed (blast intro: finmap-topological-basis)
end
```


3.8 Product Measurable Space of Finite Maps

```
definition PiF I M \equiv
sigma
    (UJ\inI. (\Pi' j\inJ. space (M j)))
    {(\Pi' j\inJ. X j) |X J. J \inI^X 隹 \Pi j\inJ. sets (M j))}
abbreviation
Pi}\mp@subsup{i}{F}{}IM\equivPiF I M
syntax
    -PiF :: pttrn }=>\mp@subsup{}{}{\prime}i\mathrm{ i set }=>\mp@subsup{}{}{\prime}a\mathrm{ measure }=>('i=> 'a) measure ((3PIF -:-./ -) 10)
syntax (xsymbols)
    -PiF :: pttrn = 'i set => 'a measure = ('i => 'a) measure ((3\mp@subsup{\Pi}{F}{}-\epsilon-./ -) 10)
syntax (HTML output)
    -PiF :: pttrn = ' i set }=>\mp@subsup{|}{}{\prime}a\mathrm{ measure }=>('i=> 'a) measure ((3\mp@subsup{\Pi}{F}{}-\in-./ -) 10)
translations
    PIF x:I.M == CONST PiF I (%x. M)
lemma PiF-gen-subset: {( \Pi' j\inJ. X j) | X J. J G I^X X (\Pi j\inJ. sets (M j))}
\subseteq
    Pow (UJ GI. (\Pi' j\inJ. space (Mj)))
    by (auto simp: Pi'-def) (blast dest: sets-into-space)
lemma space-PiF: space (PiF I M) =(\bigcupJ\inI. (\Pi' j\inJ. space (M j)))
    unfolding PiF-def using PiF-gen-subset by (rule space-measure-of)
lemma sets-PiF:
    sets (PiF I M) = sigma-sets ( UJ GI. (\Pi' j\inJ. space (M j)))
```

```
    {(\Pi' j\inJ. X j) | X J. J \inI^X ( 
    unfolding PiF-def using PiF-gen-subset by (rule sets-measure-of)
lemma sets-PiF-singleton:
    sets (PiF {I} M) = sigma-sets ( }\mp@subsup{\Pi}{}{\prime}j\inI. space (M j))
```



```
    unfolding sets-PiF by simp
lemma in-sets-PiFI:
    assumes X=(Pi'JS)J\inI \bigwedgei.i\inJ\LongrightarrowSi\in sets (Mi)
    shows X 新s (PiF I M)
    unfolding sets-PiF
    using assms by blast
lemma product-in-sets-PiFI:
    assumes }J\inI\bigwedgei.i\inJ\LongrightarrowSi\in sets (Mi
    shows (Pi' J S)\in sets (PiF I M)
    unfolding sets-PiF
    using assms by blast
lemma singleton-space-subset-in-sets:
    fixes }
    assumes }J\in
    assumes finite J
    shows space (PiF {J}M)\in sets (PiF I M)
    using assms
    by (intro in-sets-PiFI[where J=J and S=\lambdai. space (M i)])
        (auto simp: product-def space-PiF)
lemma singleton-subspace-set-in-sets:
    assumes A:A\in sets (PiF {J}M)
    assumes finite J
    assumes }J\in
    shows A\in sets (PiF I M)
    using A[unfolded sets-PiF]
    apply (induct A)
    unfolding sets-PiF[symmetric] unfolding space-PiF[symmetric]
    using assms
    by (auto intro: in-sets-PiFI intro!: singleton-space-subset-in-sets)
```


lemma

```
    finite-measurable-singletonI:
    assumes finite I
    assumes }\bigwedgeJ.J\inI\Longrightarrow finite 
    assumes MN: \J.J\inI\LongrightarrowA\in measurable (PiF {J}M)N
    shows A\in measurable (PiF I M)N
    unfolding measurable-def
proof safe
    fix y assume }y\in\mathrm{ sets }
```



```
    by (auto simp: space-PiF)
    also have ...\in sets (PiF I M)
    proof
    show finite I by fact
    fix }J\mathrm{ assume }J\in
    with assms have finite J by simp
    show A -' y\cap space (PiF {J}M) \in sets (PiF I M)
        by (rule singleton-subspace-set-in-sets[OF measurable-sets[OF assms(3)]])
fact+
    qed
    finally show A -' y \cap space (PiF I M) \in sets (PiF I M).
next
    fix x assume x fsace (PiF I M) thus A x space N
        using MN[of domain x]
        by (auto simp: space-PiF measurable-space Pi'-def)
qed
lemma space-subset-in-sets:
    fixes J::'a::countable set set
    assumes }J\subseteq
    assumes }\j.j\inJ\Longrightarrow finite 
    shows space (PiF J M) \in sets (PiF I M)
proof -
    have space (PiF J M) =\bigcup{space (PiF {j}M)|j.j\inJ}
        unfolding space-PiF by blast
    also have ...\in sets (PiF I M) using assms
        by (intro countable-finite-comprehension) (auto simp: singleton-space-subset-in-sets)
    finally show ?thesis.
qed
lemma subspace-set-in-sets:
    fixes J::'a::countable set set
    assumes A:A\in sets (PiF J M)
    assumes }J\subseteq
    assumes }\j.j\inJ\Longrightarrow\mathrm{ finite j
    shows A \in sets (PiF I M)
    using A[unfolded sets-PiF]
    apply (induct A)
    unfolding sets-PiF[symmetric] unfolding space-PiF[symmetric]
    using assms
    by (auto intro: in-sets-PiFI intro!: space-subset-in-sets)
lemma finmap-eq-Un:
    fixes X::('a::countable 和 'b) set
    shows }X=(\bigcupn.X\cap{x.domain x = set (from-nat n)}
proof -
    let ?P = \lambdai. finite }
    let ?f = \lambdas.{x\inX.domain }x=s
```

```
    have }X=\bigcup{?fs|s. ?P s} by aut
    also have \ldots=(\bigcupn. let s=set (from-nat n) in if ?P s then ?f s else {})
    by (rule UN-finite-countable-eq-Un) simp
    also have ... = (Un. {x\inX. domain x = set (from-nat n)})
    by (intro UN-cong) (auto simp: Let-def space-PiF)
    finally show ?thesis by auto
qed
lemma
    countable-measurable-PiFI:
    fixes I::'a::countable set set
    assumes MN: \J.J \inI\Longrightarrow finite J\LongrightarrowA\in measurable (PiF {J}M)N
    shows A\in measurable (PiF I M) N
    unfolding measurable-def
proof safe
    fix y assume }y\in\mathrm{ sets N
    hence A-`}y\cap\mathrm{ space (PiF I M) =(\n. A -` y \ space (PiF ({set (from-nat
n)}\capI) M))
    by (subst finmap-eq-Un) (auto simp: space-PiF Pi'-def)
    also have ...\in sets (PiF I M)
        apply (intro Int countable-nat-UN subsetI, safe)
        apply (case-tac set (from-nat i) \inI)
        apply simp-all
        apply (rule singleton-subspace-set-in-sets[OF measurable-sets[OF MN]])
        using assms < }y\in\mathrm{ sets N>
        apply (auto simp: space-PiF)
        done
    finally show }A-`y\cap\mathrm{ space (PiF I M) E sets (PiF I M).
next
    fix x assume x f space (PiF I M) thus A x \in space N
        using MN[of domain x] by (auto simp: space-PiF measurable-space Pi'-def)
qed
lemma measurable-PiF:
    assumes f:\bigwedgex.x space N\Longrightarrowdomain (fx)\inI\wedge(\foralli\in\operatorname{domain}(fx).(fx)i
space (M M))
    assumes S:\JS.J GI\Longrightarrow(\bigwedgei.i\inJ\LongrightarrowSi\in sets (Mi))\Longrightarrow
        f-` (Pi'JS)\cap space N\in sets N
    shows f}\in\mathrm{ measurable N(PiF I M)
    unfolding PiF-def
    using PiF-gen-subset
    apply (rule measurable-measure-of)
    using f apply force
    apply (insert S,auto)
    done
```


lemma

```
restrict-sets-measurable:
assumes \(A\) : \(A \in\) sets (PiF I M) and \(J \subseteq I\)
```

```
    shows }A\cap{m\mathrm{ . domain m}\inJ}\in\mathrm{ sets (PiF J M)
    using A[unfolded sets-PiF]
    apply (induct A)
    unfolding sets-PiF[symmetric] unfolding space-PiF[symmetric]
proof -
    fix a assume a f {Pi' J X |X J. J \inI^X (\Pi j\inJ. sets (M j))}
    then obtain KS where S:a=P\mp@subsup{|}{}{\prime}KSK\inI(\foralli\inK.Si\in sets (Mi))
    by auto
    show }a\cap{m.domain m\inJ}\in\operatorname{sets}(PiF J M
    proof cases
    assume K\inJ
    hence }a\cap{m\mathrm{ . domain m}\inJ}\in{P\mp@subsup{i}{}{\prime}KX|XK.K\inJ\wedgeX\in(\Pij\inK
sets (M j))} using S
            by (auto intro!: exI[where x=K] exI[where x=S] simp: Pi'-def)
            also have ...\subseteq sets (PiF J M) unfolding sets-PiF by auto
            finally show ?thesis .
    next
            assume K}\not\in
            hence }a\cap{m\mathrm{ . domain m}\inJ}={} using S by (auto simp:P\mp@subsup{i}{}{\prime}-def
            also have ...\in sets (PiF J M) by simp
            finally show ?thesis .
    qed
next
    show {}\cap{m.domain m}\inJ}\in\mathrm{ sets (PiF J M) by simp
next
    fix a :: nat => -
    assume a:(\bigwedgei. a i}\cap{m.domain m \inJ}\in sets (PiF J M)
    have UNION UNIV a \cap{m.domain m f J}=(\bigcupi.(a i\cap{m.domain m}
J}))
            by simp
    also have ... \in sets (PiF JM) using a by (intro countable-nat-UN) auto
    finally show UNION UNIV a \cap{m. domain m }\inJ}\in\mathrm{ sets (PiF J M).
next
    fix a assume a: a\cap{m.domain m}\inJ}\in\operatorname{sets (PiF J M)
    have (space (PiF I M) - a)\cap{m. domain m f J } = (space (PiF JM)-(a
{m. domain m}\inJ})
    using \langleJ\subseteqI\rangle by (auto simp: space-PiF Pi'-def)
    also have ...\epsilon sets (PiF J M) using a by auto
    finally show (space (PiF I M) - a) \cap{m. domain m f J}\in sets (PiF J M).
qed
lemma measurable-finmap-of:
    assumes f:\bigwedgei. (\existsx\in space N.i\inJ x)\Longrightarrow(\lambdax.fxi)\in measurable N(Mi)
```



```
    assumes JN: \S. {x.J x=S} \cap space N\in sets N
    shows (\lambdax. finmap-of (J x) (fx)) \in measurable N (PiF I M)
proof (rule measurable-PiF)
    fix x assume x f space N
    with J[of x] measurable-space[OF f]
```

show domain (finmap-of $(J x)(f x)) \in I \wedge$
(\forall i domain (finmap-of $(J x)(f x))$. (finmap-of $(J x)(f x)) i \in$ space $(M$ i))
by auto
next
fix $K S$ assume $K \in I$ and $*: \bigwedge i . i \in K \Longrightarrow S i \in \operatorname{sets}(M i)$
with J have eq: (λx. finmap-of $(J x)(f x))-{ }^{\prime} P i^{\prime} K S \cap$ space $N=$
(if $\exists x \in$ space $N . K=J x \wedge$ finite K then if $K=\{ \}$ then $\{x \in$ space $N . J x$ $=K\}$
else $\left(\bigcap i \in K .(\lambda x . f x i)-{ }^{\prime} S i \cap\{x \in\right.$ space $\left.N . J x=K\}\right)$ else $\})$
by (auto simp: $P i^{\prime}$-def)
have $r:\{x \in$ space $N . J x=K\}=$ space $N \cap(\{x . J x=K\} \cap$ space $N)$ by
auto
show $(\lambda x$. finmap-of $(J x)(f x))-{ }^{\prime} P i^{\prime} K S \cap$ space $N \in$ sets N
unfolding eq r
apply (simp del: INT-simps add:)
apply (intro conjI impI finite-INT JN Int[OF top])
apply simp apply assumption
apply (subst Int-assoc[symmetric])
apply (rule Int)
apply (intro measurable-sets $[O F f] *$) apply force apply assumption
apply (intro $J N$)

> done
qed
lemma measurable-PiM-finmap-of:
assumes finite J
shows finmap-of $J \in$ measurable $\left(P i_{M} J M\right)(\operatorname{PiF}\{J\} M)$
apply (rule measurable-finmap-of)
apply (rule measurable-component-singleton)
apply simp
apply rule
apply (rule 〈finite $J 〉$)
apply simp
done
lemma proj-measurable-singleton:
assumes $A \in$ sets (M i) finite I
shows $\left(\lambda x .(x)_{F} i\right)-{ }^{\prime} A \cap$ space $(P i F\{I\} M) \in \operatorname{sets}(\operatorname{PiF}\{I\} M)$
proof cases
assume $i \in I$
hence $\left(\lambda x .(x)_{F} i\right)-{ }^{`} A \cap$ space $(P i F\{I\} M)=$
$P i^{\prime} I(\lambda x$. if $x=i$ then A else space $(M x))$
using sets-into-space $[O F]\langle A \in$ sets $(M i)\rangle$ assms
by (auto simp: space-PiF $P i^{\prime}$-def)
thus ?thesis using assms $\langle A \in$ sets (M i) >
by (intro in-sets-PiFI) auto
next
assume $i \notin I$

```
    hence ( }\lambdax.(x\mp@subsup{)}{F}{}i)-`A\cap\mathrm{ space (PiF {I} M)=
            (if undefined }\inA\mathrm{ then space (PiF {I} M) else {}) by (auto simp: space-PiF
Pi'-def)
    thus ?thesis by simp
qed
lemma measurable-proj-singleton:
    fixes I
    assumes finite I i}\in
    shows (\lambdax. (x) F i) \in measurable (PiF {I} M) (M i)
proof (unfold measurable-def, intro CollectI conjI ballI proj-measurable-singleton
assms)
qed (insert }\langlei\inI\rangle\mathrm{ , auto simp: space-PiF)
lemma measurable-proj-countable:
    fixes I::'a::countable set set
    assumes y \in space (M i)
    shows (\lambdax. if i d domain x then (x) F i else y) \in measurable (PiF I M) (M i)
proof (rule countable-measurable-PiFI)
    fix }J\mathrm{ assume }J\inI\mathrm{ finite }
    show ( }\lambdax\mathrm{ . if }i\in\mathrm{ domain x then x i else y) }\in\mathrm{ measurable (PiF {J} M) (M i)
        unfolding measurable-def
    proof safe
        fix z assume z\in sets (M i)
        have ( }\lambdax\mathrm{ . if }i\in\mathrm{ domain }x\mathrm{ then x i else y) -' }z\cap\mathrm{ space (PiF {J}M)=
            (\lambdax. if i }\inJ\mathrm{ then (x)
            by (auto simp: space-PiF Pi'-def)
        also have ... \in sets (PiF {J} M) using 〈z \in sets (M i)\rangle\langlefinite J\rangle
            by (cases i 
        finally show ( }\lambdax\mathrm{ . if }i\in\mathrm{ domain x then x i else y) -' z \ space (PiF {J}M)
\epsilon
            sets (PiF {J} M).
    qed (insert }\langley\in\mathrm{ space (M i)`, auto simp: space-PiF Pi'-def)
qed
lemma measurable-restrict-proj:
    assumes }J\inII finite 
    shows finmap-of J \in measurable (PiM J M) (PiF II M)
    using assms
    by (intro measurable-finmap-of measurable-component-singleton) auto
```


lemma

```
measurable-proj-PiM:
fixes \(J K\) ::'a::countable set and \(I:^{\prime} a\) set set
assumes finite \(J J \in I\)
assumes \(x \in\) space (PiM J M)
shows proj \(\in\)
            measurable (PiF {J} M) (PiM J M)
proof (rule measurable-PiM-single)
```

```
    show proj \in space (PiF {J} M) ->( }\mp@subsup{\Pi}{E}{}i\inJ. space (M i)
    using assms by (auto simp add: space-PiM space-PiF extensional-def sets-PiF
Pi'-def)
next
    fix A i assume A: i\inJ A\in sets (Mi)
    show {\omega\in space (PiF {J}M).(\omega) F i f A } f sets (PiF {J}M)
    proof
    have {\omega\in space (PiF {J}M). (\omega)
        (\lambda\omega. (\omega) F }i)-\mp@subsup{}{}{\prime}A\cap\mathrm{ space (PiF {J} M) by auto
    also have ...\in sets (PiF {J} M)
        using assms A by (auto intro: measurable-sets[OF measurable-proj-singleton]
simp: space-PiM)
    finally show ?thesis .
    qed simp
qed
lemma sets-subspaceI:
    assumes }A\cap\mathrm{ space M }\in\mathrm{ sets M
    assumes }B\in\mathrm{ sets M
    shows }A\capB\in\mathrm{ sets }M\mathrm{ using assms
proof -
    have }A\capB=(A\cap\mathrm{ space M) คB
    using assms sets-into-space by auto
    thus ?thesis using assms by auto
qed
lemma space-PiF-singleton-eq-product:
    assumes finite I
    shows space (PiF {I} M) =( (\Pi' i\inI. space (Mi))
    by (auto simp: product-def space-PiF assms)
adapted from sets (P\mp@subsup{i}{M}{} ?I ?M) = sigma-sets ( }\mp@subsup{\Pi}{E}{}\mathrm{ í? ?I. space (?M i)) {{f
\in \Pi
lemma sets-PiF-single:
    assumes finite I I\not={}
    shows sets (PiF {I} M) =
    sigma-sets (\Pi' i\inI. space (M i))
        {{f\in\mp@subsup{\Pi}{}{\prime}i\inI. space (M i).fi\inA}|iA.i\inI\wedgeA\in\operatorname{sets}(Mi)}
    (is - = sigma-sets ? \Omega ?R)
    unfolding sets-PiF-singleton
proof (rule sigma-sets-eqI)
    interpret R: sigma-algebra ?\Omega sigma-sets ?\Omega ?R by (rule sigma-algebra-sigma-sets)
auto
    fix A assume A\in{P\mp@subsup{i}{}{\prime}IX|X.X\in(\Pij\inI. sets (M j))}
    then obtain X where X:A=P\mp@subsup{i}{}{\prime}IXX X (\Pij\inI. sets (M j)) by auto
    show }A\in\mathrm{ sigma-sets ? }\Omega\mathrm{ ?R
    proof -
        from }\langleI\not={}\rangleX have A=(\bigcapj\inI.{f\inspace (PiF {I}M).fj\inX j}
            using sets-into-space
```

```
        by (auto simp: space-PiF product-def) blast
    also have ...\in sigma-sets ? \Omega ?R
        using X<I\not={}`assms by (intro R.finite-INT) (auto simp: space-PiF)
    finally show }A\in\mathrm{ sigma-sets ? }\Omega\mathrm{ ? R .
    qed
next
    fix }A\mathrm{ assume }A\in?
    then obtain i B where A:A={f\in\mp@subsup{\Pi}{}{\prime}}i\inI.\mathrm{ space (Mi).fi}\=B}i\inIB
sets (M i)
    by auto
    then have A=(\Pi' j\inI. if j=i then B else space (M j))
        using sets-into-space[OF A(3)]
        apply (auto simp: P\mp@subsup{i}{}{\prime}-iff split: split-if-asm)
        apply blast
        done
```



```
        using A
        by (intro sigma-sets.Basic)
        (auto intro: exI[where x=\lambdaj. if j = i then B else space (M j)])
    finally show A \in sigma-sets ? \Omega {Pi'I X |X.X \in (\Pi j\inI. sets (M j))}.
qed
adapted from (\bigwedgei.i\in? \ \Longrightarrow?A i=?B i)\LongrightarrowP\mp@subsup{i}{E}{} ?I ?A=P\mp@subsup{i}{E}{}\mathrm{ ?I ?B}
lemma Pi'-cong:
    assumes finite I
    assumes \i. i\inI\Longrightarrowfi=gi
    shows Pi'If = Pi' I g
using assms by (auto simp: Pi'-def)
adapted from \llbracketfinite ? I; \in m. \llbracketi\in?I;n\leqm\rrbracket\Longrightarrow?A ni\subseteq?A mi\rrbracket
\Longrightarrow ( \bigcup _ { n } P i ~ ? I ~ ( ? A ~ n ) ) = ( \Pi i \in ? I . ~ \bigcup ~ n ~ ? A ~ n ~ i ) ~
lemma Pi'-UN:
    fixes }A:: nat => ' i > 'a se
    assumes finite I
    assumes mono: \inm. i\inI\Longrightarrown\leqm\LongrightarrowAni\subseteqAmi
    shows (Un.Pi'I (An)) = Pi'I}I(\lambdai.\bigcupn.Ani
proof (intro set-eqI iffI)
    fix f}\mathrm{ assume f}\inP\mp@subsup{P}{}{\prime}I(\lambdai.\bigcupn.Ani
    then have }\foralli\inI.\existsn.fi\inA ni domain f=I by (auto simp:〈finite I>Pi'-def
    from bchoice[OF this(1)] obtain n where n: \i. i\inI\Longrightarrowfi\in(A(ni)i)
by auto
    obtain k where k: \bigwedgei. i\inI\Longrightarrown i\leqk
        using 〈finite I\ finite-nat-set-iff-bounded-le[of n'I] by auto
    have f}\inP\mp@subsup{i}{}{\prime}I(\lambdai.Aki
    proof
        fix }i\mathrm{ assume i
        from mono[OF this, of n i k]k[OF this]n[OF this]\langledomain f}=I\rangle\langlei\inI
        show fi\inA ki by (auto simp:\langlefinite I\rangle)
    qed (simp add: <domain f=I\〈finite I \)
```

then show $f \in\left(\bigcup n . P i^{\prime} I(A n)\right)$ by auto qed (auto simp: Pi'-def \langle finite $I\rangle$)
adapted from \llbracket finite ? $I ; \bigwedge i . i \in ? I \Longrightarrow$ incseq $(? S i) ; \bigwedge i . i \in ? I \Longrightarrow\left(\bigcup_{j}\right.$ $? S i j)=\operatorname{space}(? M i) ; \bigwedge i . i \in ? I \Longrightarrow \operatorname{range}(? S i) \subseteq ? E i ; \bigwedge i . i \in ? I$ \Longrightarrow ? $\mathrm{E} i \subseteq$ Pow $($ space $(? M i)) ; \bigwedge i . i \in ? I \Longrightarrow$ sets $(? M i)=$ sigma-sets (space $($?M $i))(? E i) \rrbracket \Longrightarrow$ sets $\left(P i_{M}\right.$?I ?M) $=$ sigma-sets $\left(\right.$ space $\left(P i_{M}\right.$?I ? $M)$) $\left\{P i_{E}\right.$?I $F \mid F . \forall i \in ? I . F i \in$? $\left.E i\right\}$
lemma sigma-fprod-algebra-sigma-eq:
fixes $E::^{\prime} i \Rightarrow$ 'a set set
assumes $[$ simp $]$: finite $I I \neq\{ \}$
assumes S-mono: $\bigwedge i . i \in I \Longrightarrow \operatorname{incseq}(S i)$
and S-union: $\bigwedge i . i \in I \Longrightarrow(\bigcup j . S i j)=\operatorname{space}(M i)$
and S-in- $E: \bigwedge i . i \in I \Longrightarrow \operatorname{range}(S i) \subseteq E i$
assumes E-closed: $\bigwedge i . i \in I \Longrightarrow E i \subseteq$ Pow (space (Mi))
and E-generates: $\bigwedge i . i \in I \Longrightarrow$ sets $(M i)=$ sigma-sets $($ space $(M i))(E i)$
defines $P==\left\{P i^{\prime} I F \mid F . \forall i \in I . F i \in E i\right\}$
shows sets $(\operatorname{PiF}\{I\} M)=$ sigma-sets $($ space $(\operatorname{PiF}\{I\} M)) P$
proof
let $? P=\operatorname{sigma}\left(\operatorname{space}\left(P i_{F}\{I\} M\right)\right) P$
have P-closed: $P \subseteq$ Pow (space $\left(P i_{F}\{I\} M\right)$)
using E-closed by (auto simp: space-PiF P-def $P i^{\prime}$-iff subset-eq)
then have space- P : space ? $P=\left(\Pi^{\prime} i \in I\right.$. space $\left.(M i)\right)$
by (simp add: space-PiF)
have sets $(P i F\{I\} M)=$
sigma-sets (space ?P) $\left\{\left\{f \in \Pi^{\prime} i \in I\right.\right.$. space (Mi). $\left.f i \in A\right\} \mid i A . i \in I \wedge A \in$ sets ($M i$) \}
using sets-PiF-single[of I M] by (simp add: space-P)
also have $\ldots \subseteq$ sets (sigma (space (PiF $\{I\} M)$) P)
proof (safe intro!: sigma-sets-subset)
fix $i A$ assume $i \in I$ and $A: A \in \operatorname{sets}(M i)$
have $\left(\lambda x .(x)_{F} i\right) \in$ measurable ?P $($ sigma $($ space $(M i))(E i))$
proof (subst measurable-iff-measure-of)
show $E i \subseteq$ Pow (space ($M i$) using $\langle i \in I\rangle$ by fact
from space- $P\langle i \in I\rangle$ show $\left(\lambda x .(x)_{F} i\right) \in$ space ?P \rightarrow space $(M i)$
by auto
show $\forall A \in E i .\left(\lambda x .(x)_{F} i\right)-' A \cap$ space ? $P \in$ sets ?P proof
fix A assume $A: A \in E i$
then have $\left(\lambda x .(x)_{F} i\right)-{ }^{\prime} A \cap$ space $? P=\left(\Pi^{\prime} j \in I\right.$. if $i=j$ then A else space $(M j))$
using E-closed $\langle i \in I\rangle$ by (auto simp: space-P Pi-iff subset-eq split: split-if-asm)
also have $\ldots=\left(\Pi^{\prime} j \in I . \bigcup n\right.$. if $i=j$ then A else $\left.S j n\right)$
by (intro Pi^{\prime}-cong) (simp-all add: S-union)
also have $\ldots=\left(\bigcup n\right.$. $\Pi^{\prime} j \in I$. if $i=j$ then A else $\left.S j n\right)$
using S-mono
by (subst $P^{\prime} i^{\prime}-U N[$ symmetric, $O F\langle$ finite $I\rangle]$) (auto simp: incseq-def) also have $\ldots \in$ sets ? P

```
            proof (safe intro!: countable-UN)
                    fix n show ( }\mp@subsup{\Pi}{}{\prime}j\inI.\mathrm{ . if }i=j\mathrm{ then A else S j n) 
                    using A S-in-E
                by (simp add: P-closed)
                    (auto simp: P-def subset-eq intro!: exI[of - \lambdaj. if i = j then A else S j
n])
            qed
            finally show ( }\lambdax.(x\mp@subsup{)}{F}{}i)-`A\cap\mathrm{ space ?P }\in\mathrm{ sets ?P
                using P-closed by simp
            qed
    qed
    from measurable-sets[OF this, of A] A<i\inI\rangle E-closed
    have (\lambdax.(x\mp@subsup{)}{F}{}}\mathrm{ i) -' A }\cap\mathrm{ space ?P }\in\mathrm{ sets ?P
        by (simp add: E-generates)
```



```
        using P-closed by (auto simp: space-PiF)
    finally show ...\in sets ?P .
qed
finally show sets (PiF {I} M)\subseteq sigma-sets (space (PiF {I}M)) P
    by (simp add: P-closed)
    show sigma-sets (space (PiF {I} M)) P\subseteq sets (PiF {I}M)
    using 〈finite I\rangle\langleI\not={}>
    by (auto intro!: sigma-sets-subset product-in-sets-PiFI simp: E-generates P-def)
qed
lemma enumerable-sigma-fprod-algebra-sigma-eq:
    assumes I\not={}
    assumes [simp]: finite I
    shows sets (PiF {I} (\lambda-. borel)) = sigma-sets (space (PiF {I} (\lambda-. borel)))
        {P\mp@subsup{i}{}{\prime}}IF|F.(\foralli\inI.Fi\in\mathrm{ range enum-basis )}
proof -
    from open-incseqE[OF open-UNIV] guess S::nat }=>\mathrm{ 'b set . note S = this
    show ?thesis
    proof (rule sigma-fprod-algebra-sigma-eq)
        show finite I by simp
    show I}\not={}\mathrm{ by fact
    show incseq S (\bigcupj.S j)= space borel range S\subseteq range enum-basis
        using S by simp-all
    show range enum-basis \subseteqPow (space borel) by simp
    show sets borel = sigma-sets (space borel) (range enum-basis)
        using borel-eq-sigma-enum-basis .
    qed
qed
```

adapted from $\llbracket ? I \neq\{ \} ;$ finite $? I \rrbracket \Longrightarrow$ sets $\left(P i_{F}\{? I\}(\lambda\right.$-. borel $\left.)\right)=$ sigma-sets
(space $\left(P i_{F}\{? I\}(\lambda\right.$-. borel $\left.\left.)\right)\right)\left\{P i^{\prime}\right.$? $I F \mid F . \forall i \in ? I . F i \in$ range enum-basis $\}$
lemma enumerable-sigma-prod-algebra-sigma-eq:
assumes $I \neq\{ \}$
assumes [simp]: finite I

```
    shows sets (PiM I (\lambda-. borel)) = sigma-sets (space (PiM I ( }\lambda\mathrm{ -. borel)))
    {Pi\mp@subsup{i}{E}{}IF|F.\foralli\inI.Fi\in range enum-basis}
proof -
    from open-incseqE[OF open-UNIV] guess S::nat }=>\mp@subsup{}{}{\prime}b\mathrm{ set . note S = this
    show ?thesis
    proof (rule sigma-prod-algebra-sigma-eq)
        show finite I by simp note[[show-types]]
        fix i show incseq S (\bigcupj.Sj) = space borel range S\subseteq range enum-basis
        using S by simp-all
    show range enum-basis \subseteq Pow (space borel) by simp
    show sets borel = sigma-sets (space borel) (range enum-basis)
        using borel-eq-sigma-enum-basis .
    qed
qed
lemma product-open-generates-sets-PiF-single:
    assumes I\not={}
    assumes [simp]: finite I
    shows sets (PiF {I} (\lambda-. borel::'b::enumerable-basis measure)) =
    sigma-sets (space (PiF {I} (\lambda-. borel))) {Pi' I F |F. (\foralli\inI. Fi\inCollect
open)}
proof -
    from open-incseqE[OF open-UNIV] guess S::nat }=>\mp@subsup{}{}{\prime}b\mathrm{ set . note S = this
    show ?thesis
    proof (rule sigma-fprod-algebra-sigma-eq)
        show finite I by simp
        show I\not= {} by fact
        show incseq S (Uj.S j)= space borel range S\subseteqCollect open
        using S by (auto simp: open-enum-basis)
    show Collect open \subseteq Pow (space borel) by simp
    show sets borel = sigma-sets (space borel) (Collect open)
        by (simp add: borel-def)
    qed
qed
lemma product-open-generates-sets-PiM:
    assumes I\not={}
    assumes [simp]: finite I
    shows sets (PiM I (\lambda-. borel::'b::enumerable-basis measure)) =
    sigma-sets (space (PiM I (\lambda-. borel))) {P\mp@subsup{i}{E}{}IF|F.\foralli\inI.Fi\inCollect open}
proof -
    from open-incseqE[OF open-UNIV] guess S::nat }=>\mp@subsup{}{}{\prime}b\mathrm{ set . note S = this
    show ?thesis
    proof (rule sigma-prod-algebra-sigma-eq)
    show finite I by simp note[[show-types]]
    fix i show incseq S (\bigcupj.S j) = space borel range S\subseteqCollect open
        using S by (auto simp: open-enum-basis)
    show Collect open \subseteq Pow (space borel) by simp
    show sets borel = sigma-sets (space borel) (Collect open)
```

```
        by (simp add: borel-def)
    qed
qed
lemma finmap-UNIV[simp]:(\J\inCollect finite. J UNIV)=UNIV by auto
lemma borel-eq-PiF-borel:
    shows (borel :: (' }i::\mathrm{ countable }\mp@subsup{=>}{F}{}\mp@subsup{}{}{\prime}'a::\mathrm{ polish-space) measure) =
    PiF (Collect finite) ( }\lambda\mathrm{ -. borel :: 'a measure)
proof (rule measure-eqI)
    have C:Collect finite }\not={}\mathrm{ by auto
    show sets (borel::(' }i=\mp@subsup{=}{F}{}\mp@subsup{}{}{\prime}a)\mathrm{ measure ) = sets (PiF (Collect finite) ( }\lambda\mathrm{ -. borel))
    proof
        show sets (borel::('i = }\mp@subsup{F}{}{\prime}\mp@subsup{}{}{\prime}a)\mathrm{ measure) }\subseteq\mathrm{ sets (PiF (Collect finite) ( }\lambda\mathrm{ -. borel))
            apply (simp add: borel-def sets-PiF)
    proof (rule sigma-sets-mono, safe, cases)
        fix X::(' }i\mp@subsup{|}{F}{}\mp@subsup{}{}{\prime}a)\mathrm{ set assume open X X 
        from open-basisE[OF this] guess NA NB . note N = this
        hence }X=(\bigcupi.P\mp@subsup{i}{}{\prime}(NA i)(NBi)) by sim
        also have ... }
                sigma-sets UNIV {Pi' J S |S J. finite J ^S S J -> sigma-sets UNIV
(Collect open)}
            using N by (intro Union sigma-sets.Basic) blast
        finally show }X\in\mathrm{ sigma-sets UNIV
            {Pi'}JX|X J. finite J ^X X J -> sigma-sets UNIV (Collect open)} .
        qed (auto simp: Empty)
    next
        show sets (PiF (Collect finite) (\lambda-. borel)) \subseteq sets (borel::(' }i\mp@subsup{|}{F}{}\mp@subsup{}{}{\prime}\a) measure
        proof
        fix }x\mathrm{ assume }x:x\in\mathrm{ sets (PiF (Collect finite::'i set set) ( }\lambda\mathrm{ -. borel::'a measure))
        hence }x\mathrm{ -sp: x}\subseteq\mathrm{ space (PiF (Collect finite) ( }\lambda\mathrm{ -. borel)) by (rule sets-into-space)
        from finmap-eq-Un have }x=(\bigcupn.x\cap{xa.domain xa=set(from-nat n)}
            (is - = (Un. ?rx n)).
        also have ... \in sets borel
        proof (rule countable-nat-UN, safe)
            fix }
            { assume ef: set (from-nat i) = ({}::'i set)
            { assume e:(?rx i)={}
                            hence (?rx i) \in sets borel unfolding e by simp
                    } moreover {
                    assume (?rx i) \not={}
                    then obtain f}\mathrm{ where f}\inx\mathrm{ domain }f={}\mathrm{ using ef by auto
                    hence (?rx i) ={f} using <set (from-nat i) = {}>
                            by (auto simp: finmap-eq-iff)
                    also have {f}\in sets borel by simp
                    finally have (?rx i) \in sets borel .
                    } ultimately have (?rx i) \in sets borel by blast
            } moreover {
                    assume set (from-nat i)}\not=({}::'i set
```

from open-incseqE[OF open-UNIV] guess $S::$ nat $\Rightarrow{ }^{\prime}$ a set . note $S=$
this
have $(? r x i)=x \cap\{m$. domain $m \in\{$ set (from-nat $i)\}\}$ by auto also have $\ldots \in$ sets (PiF \{set (from-nat i)\} (λ-. borel))
using x apply (rule restrict-sets-measurable) by (simp add: enum-finite-def)
also have $\ldots=$ sigma-sets (space (PiF \{set (from-nat i)\} (λ-. borel)))
$\left\{P i^{\prime}(\right.$ set $($ from-nat $i)) F \mid F .(\forall j \in$ set (from-nat $i) . F j \in$ range enum-basis)\}
(is - = sigma-sets - ?P)
by (rule enumerable-sigma-fprod-algebra-sigma-eq[OF〈set (from-nat i)
$\neq\{ \}>]$)
(simp add: enum-finite-def)
also have $\ldots \subseteq$ sets borel
proof
fix x
assume $x \in$ sigma-sets (space (PiF $\{$ set (from-nat $i)\}(\lambda$-. borel))) ?P
thus $x \in$ sets borel
proof (rule sigma-sets.induct, safe)
fix $F::^{\prime} i \Rightarrow{ }^{\prime} a$ set
assume $\forall j \in$ set (from-nat i). $F j \in$ range enum-basis
hence $P i^{\prime}$ (set (from-nat i)) $F \in$ range enum-basis-finmap
unfolding range-enum-basis-eq by auto
hence open $\left(P i^{\prime}(\right.$ set (from-nat $\left.i)\right) F$ by (rule range-enum-basis-finmap-imp-open)
thus $P i^{\prime}($ set $($ from-nat $i)) F \in$ sets borel by simp
next
fix $a::\left({ }^{\prime} i \Rightarrow_{F}{ }^{\prime} a\right)$ set
have space (PiF \{set (from-nat i)::'i set $\}(\lambda$-. borel::'a measure $))=$ $P i^{\prime}($ set (from-nat $\left.i)\right)(\lambda$-. UNIV)
by (auto simp: space-PiF product-def enum-finite-def)
moreover have open (P^{\prime} (set (from-nat $\left.i\right)::$ 'i set) (λ-. UNIV $::^{\prime}$ a set $)$)
by (intro open-Pi'I) (auto simp: enum-finite-def)
ultimately
have space (PiF \{set (from-nat $i)::^{\prime} i$ set $\}(\lambda$-. borel::'a measure $\left.)\right) \in$
sets borel
by simp
moreover
assume $a \in$ sets borel
ultimately show space (PiF \{set (from-nat i) $\}(\lambda$-. borel $)$) $-a \in$ sets
borel ..
qed auto
qed
finally have $(? r x i) \in$ sets borel .
\} ultimately show $(? r x i) \in$ sets borel by blast
qed
finally show $x \in$ sets (borel) .
qed
qed
qed (simp add: emeasure-sigma borel-def PiF-def)

3.9 Measure preservation

Measure preservation is not used at the moment.
definition measure-preserving $f A B \longleftrightarrow f \in$ measurable $A B \wedge(\forall x \in$ sets B. $\operatorname{distr} A B f x=B x)$

lemma

assumes measure-preserving $f A B$
shows measure-preserving-distr: $\bigwedge x . x \in$ sets $B \Longrightarrow \operatorname{distr} A B f x=B x$
and measure-preserving-measurable: $f \in$ measurable $A B$
using assms by (auto simp: measure-preserving-def)
lemma measure-preservingI:
assumes $f \in$ measurable $A B \bigwedge x . x \in \operatorname{sets} B \Longrightarrow \operatorname{distr} A B f x=B x$ shows measure-preserving $f A B$
using assms by (auto simp: measure-preserving-def)
lemma measure-preserving $I^{\prime}[$ intro $]$:
assumes $A B: f \in$ measurable $A B$
assumes $m: \bigwedge x . x \in$ sets $B \Longrightarrow$ emeasure $A\left(f-{ }^{\prime} x \cap\right.$ space $\left.A\right)=$ emeasure B
x
shows measure-preserving $f A B$
apply (rule measure-preservingI $[O F A B]$)
apply (subst emeasure-distr [OF AB])
apply assumption
apply (rule m)
apply assumption
done

lemma

measure-preserving-comp:
assumes $A B$: measure-preserving $f A B$
assumes $B C$: measure-preserving $g B C$
shows measure-preserving ($g \circ f$) $A C$
proof
note $m A B=$ measure-preserving-measurable $[O F A B]$
note $m B C=$ measure-preserving-measurable $[O F B C]$
show g of \in measurable $A C$
using $m A B m B C$..
fix x assume $x \in$ sets C
hence $C x=\operatorname{distr} B C g x$
by (rule measure-preserving-distr[OF BC, symmetric])
also have $\ldots=B\left(g-{ }^{\prime} x \cap\right.$ space $\left.B\right)$
using $m B C\langle x \in$ sets $C\rangle$ by (rule emeasure-distr)
also have $\ldots=\operatorname{distr} A B f\left(g-{ }^{\prime} x \cap\right.$ space $\left.B\right)$
using measurable-sets[OF $m B C\langle x \in$ sets $C\rangle]$
by (rule measure-preserving-distr[OF AB, symmetric])
also have $\ldots=$ emeasure $A\left(f-{ }^{\prime}\left(g-{ }^{\prime} x \cap\right.\right.$ space $\left.B\right) \cap$ space $\left.A\right)$
using $m A B$ measurable-sets[OF $m B C\langle x \in$ sets $C\rangle$]

```
    by (rule emeasure-distr)
    also have ...= emeasure }A(f-`g-`x\cap(f-` space B\cap\mathrm{ space A))
    by (simp add: Int-assoc)
    also have f -' space B \cap space A = space A
    using sets-into-space[OF measurable-sets[OF mAB top]] measurable-space[OF
mAB]
    by auto
    finally show emeasure A((g\circf) -' }x\cap\mathrm{ space A)= emeasure C x
    by (simp add: vimage-compose)
qed
```


3.10 Isomorphism between Functions and Finite Maps

lemma

measurable-compose:
fixes $f::^{\prime} a \Rightarrow$ ' b
assumes $i n j: \bigwedge j . j \in J \Longrightarrow f^{\prime}(f j)=j$
assumes finite J
shows $(\lambda m$. compose $J m f) \in$ measurable $\left(\operatorname{PiM}\left(f^{\prime} J\right)(\lambda-. M)\right)(\operatorname{PiM} J(\lambda-$. M))
proof (rule measurable-PiM)
show (λm. compose $J m f$)
$\in \operatorname{space}\left(P i_{M}\left(f^{\prime} J\right)(\lambda-. M)\right) \rightarrow$
$(J \rightarrow$ space $M) \cap$ extensional J
proof safe
fix x and i
assume $x: x \in \operatorname{space}(\operatorname{PiM}(f ‘ J)(\lambda-. M)) i \in J$
with inj show compose $J x f i \in$ space M
by (auto simp: space-PiM compose-def)
next
fix x assume $x \in \operatorname{space}\left(\operatorname{PiM}\left(f^{\prime} J\right)(\lambda-. M)\right)$
show (compose $J x f$) \in extensional J by (rule compose-extensional)
qed
next
fix $S X$
have inv: $\bigwedge j . j \in f^{\prime} J \Longrightarrow f\left(f^{\prime} j\right)=j$ using assms by auto
assume $S: S \neq\{ \} \vee J=\{ \}$ finite $S S \subseteq J$ and $P: \wedge i . i \in S \Longrightarrow X i \in$ sets M
have (λm. compose $J m f$) -' prod-emb $J(\lambda-. M) S\left(P i_{E} S X\right) \cap$
space $\left(P i_{M}(f ' J)(\lambda-. M)\right)=\operatorname{prod-emb}(f$ ' $J)(\lambda-. M)\left(f\right.$ 'S) $\left(P i_{E}(f ' S)\right.$
($\left.\left.\lambda b . X\left(f^{\prime} b\right)\right)\right)$
using assms inv S sets-into-space $[O F P]$
by (force simp: prod-emb-iff compose-def space-PiM extensional-def Pi-def intro:
imageI)
also have $\ldots \in \operatorname{sets}\left(P i_{M}\left(f^{\prime} J\right)(\lambda-. M)\right)$
proof
from S show f ' $S \subseteq f^{\prime} J$ by auto
show $\left(\Pi_{E} b \in f^{\prime} S . X\left(f^{\prime} b\right)\right) \in \operatorname{sets}\left(P i_{M}(f ' S)(\lambda-. M)\right)$
proof
show finite (f ' S) using S by simp
fix i assume $i \in f$ ' S hence $f^{\prime} i \in S$ using S assms by auto thus $X\left(f^{\prime} i\right) \in$ sets M by (rule P)
qed
qed
finally show $(\lambda m$. compose $J m f)-‘$ prod-emb $J(\lambda-. M) S\left(P i_{E} S X\right) \cap$ space $\left(P i_{M}\left(f^{\prime} J\right)(\lambda-. M)\right) \in \operatorname{sets}\left(P i_{M}\left(f^{\prime} J\right)(\lambda-. M)\right)$.
qed
lemma
measurable-compose-inv:
fixes $f::^{\prime} a \Rightarrow{ }^{\prime} b$
assumes $i n j: \bigwedge j . j \in J \Longrightarrow f^{\prime}(f j)=j$
assumes finite J
shows $\left(\lambda m\right.$. compose $\left.\left(f^{\prime} J\right) m f^{\prime}\right) \in$ measurable $(\operatorname{PiM} J(\lambda-. M))\left(\operatorname{PiM}\left(f^{\prime} J\right)\right.$
(λ-. M))
proof -
have $\left(\lambda m\right.$. compose $\left.\left(f^{\prime} J\right) m f^{\prime}\right) \in$ measurable $\left(P i_{M}\left(f^{\prime}{ }^{\prime} f^{\prime} J\right)(\lambda-. M)\right)\left(P i_{M}\right.$ $(f$ 'J) $(\lambda-. M))$
using assms by (auto intro: measurable-compose)
moreover
from inj have f^{\prime} ' f ' $J=J$ by (metis (hide-lams, mono-tags) image-iff set-eqI)
ultimately show?thesis by simp
qed
locale function-to-finmap $=$
fixes $J::^{\prime} a$ set and $f::{ }^{\prime} a \Rightarrow{ }^{\prime} b::$ countable and f^{\prime}
assumes [simp]: finite J
assumes inv: $i \in J \Longrightarrow f^{\prime}(f i)=i$

begin

to measure finmaps
definition $f m=\left(\right.$ finmap-of $\left.\left(f^{\prime} J\right)\right) o\left(\lambda g\right.$. compose $\left.\left(f^{\prime} J\right) g f^{\prime}\right)$
lemma domain-fm[simp]: domain $(f m x)=f$ ' J
unfolding $f m$-def by simp
lemma fm-restrict $[$ simp $]:$ fm (restrict $y J)=f m y$
unfolding fm-def by (auto simp: compose-def inv intro: restrict-ext)
lemma fm-product:
assumes $\bigwedge i$. space $(M i)=U N I V$
shows $f m-{ }^{\prime} P i^{\prime}(f ‘ J) S \cap \operatorname{space}\left(P i_{M} J M\right)=\left(\Pi_{E} j \in J . S(f j)\right)$
using assms
by (auto simp: inv fm-def compose-def space-PiM Pi'-def)
lemma fm-measurable:
assumes f ' $J \in N$
shows $f m \in$ measurable $\left(P i_{M} J(\lambda-. M)\right)\left(P i_{F} N(\lambda-. M)\right)$
unfolding $f m$-def

```
proof (rule measurable-comp, rule measurable-compose-inv)
    show finmap-of (f'J) \in measurable (PiM}(f`J)(\lambda-. M)) (PiF N (\lambda-. M))
        using assms by (intro measurable-finmap-of measurable-component-singleton)
auto
qed (simp-all add: inv)
lemma proj-fm:
    assumes }x\in
    shows fmm(fx)=mx
    using assms by (auto simp: fm-def compose-def o-def inv)
lemma inj-on-compose-f':inj-on ( }\lambdag\mathrm{ . compose (f`}J)g\mp@subsup{f}{}{\prime})(\mathrm{ extensional J)
proof (rule inj-on-inverseI)
    fix }x::''a=>'c assume x extensional J
    thus ( }\lambdax\mathrm{ . compose J xf) (compose (f`J) x f') = x
        by (auto simp: compose-def inv extensional-def)
qed
lemma inj-on-fm:
    assumes \i. space (Mi)=UNIV
    shows inj-on fm (space (Pi (M J M))
    using assms
    apply (auto simp: fm-def space-PiM)
    apply (rule comp-inj-on)
    apply (rule inj-on-compose-f ')
    apply (rule finmap-of-inj-on-extensional-finite)
    apply simp
    apply (auto)
    done
lemma fm-vimage-image-eq:
    assumes \i. space (M i) = UNIV
```



```
    shows fm -`fm' }X\cap\mathrm{ space ( }P\mp@subsup{i}{M}{}JM)=
    using assms
    by (intro inj-on-vimage-image-eq inj-on-fm)
    (auto simp: sets-into-space)
```

to measure functions
definition $m f=(\lambda g$. compose $J g f)$ o proj
lemma
assumes $x \in$ space $\left(P i_{M} J(\lambda-. M)\right.$) finite J
shows proj $($ finmap-of $J x)=x$
using assms by (auto simp: space-PiM extensional-def)
lemma
assumes $x \in \operatorname{space}\left(P i_{F}\{J\}(\lambda-. M)\right)$
shows finmap-of $J($ proj $x)=x$
using assms by (auto simp: space-PiF Pi'-def finmap-eq-iff)
lemma $m f$-fm:
assumes $x \in \operatorname{space}\left(P i_{M} J(\lambda-. M)\right)$
shows $m f(f m x)=x$
proof -
have $m f(f m x) \in$ extensional J
by (auto simp: mf-def extensional-def compose-def)
moreover
have $x \in$ extensional J using assms sets-into-space
by (force simp: space-PiM)
moreover
\{ fix i assume $i \in J$
hence $m f(f m x) i=x i$
by (auto simp: inv mf-def compose-def fm-def)
\}
ultimately
show ?thesis by (rule extensionalityI)
qed
lemma $m f$-measurable:
assumes space $M=U N I V$
shows $m f \in$ measurable $\left(\operatorname{PiF}\left\{f^{\prime} J\right\}(\lambda-. M)\right)(\operatorname{PiM} J(\lambda-. M))$
unfolding $m f$-def
proof (rule measurable-comp, rule measurable-proj-PiM)
show $(\lambda g$. compose $J g f) \in$
measurable $\left(P i_{M}\left(f^{\prime} J\right)(\lambda x . M)\right)\left(P i_{M} J(\lambda-. M)\right)$
by (rule measurable-compose, rule inv) auto
qed (auto simp add: space-PiM extensional-def assms)
lemma fm-image-measurable:
assumes space $M=U N I V$
assumes $X \in$ sets $\left(P i_{M} J(\lambda-. M)\right)$
shows $f m$ ' $X \in$ sets $\left(\operatorname{PiF}\left\{f^{\prime} J\right\}(\lambda-. M)\right)$
proof -
have $f m^{\prime} X=(m f)-‘ X \cap$ space $\left(\operatorname{PiF}\left\{f^{\prime} J\right\}(\lambda-. M)\right)$
proof safe
fix x assume $x \in X$
with $m f-f m[o f x]$ sets-into-space[OF assms(2)] show $f m x \in m f-$ ' X by auto show $f m x \in$ space (PiF $\left\{f^{\prime} J\right\}(\lambda-. M)$) by (simp add: space-PiF assms)
next
fix $y x$
assume $x: m f y \in X$
assume $y: y \in \operatorname{space}\left(\operatorname{PiF}\left\{f^{\prime} J\right\}(\lambda-. M)\right)$
thus $y \in f m$ ' X
by (intro image-eqI [$O F-x]$, unfold finmap-eq-iff)
(auto simp: space-PiF fm-def mf-def compose-def inv Pi'-def)
qed
also have $\ldots \in$ sets $\left(P i F\left\{f^{\prime} J\right\}(\lambda-. M)\right)$

```
    using assms
    by (intro measurable-sets[OF mf-measurable]) auto
    finally show ?thesis.
qed
lemma fm-image-measurable-finite:
    assumes space M = UNIV
    assumes X 年ts (Pi M J (\lambda-. M::'c measure))
    shows fm' X 新s (PiF (Collect finite) ( }\lambda\mathrm{ -. M::'c measure))
    using fm-image-measurable[OF assms]
    by (rule subspace-set-in-sets) (auto simp: finite-subset)
measure on finmaps
definition mapmeasure M N = distr M (PiF (Collect finite) N) (fm)
lemma sets-mapmeasure[simp]: sets (mapmeasure M N) = sets (PiF (Collect fi-
nite) N)
    unfolding mapmeasure-def by simp
lemma space-mapmeasure[simp]: space (mapmeasure M N) = space (PiF (Collect
finite) N)
    unfolding mapmeasure-def by simp
lemma mapmeasure-PiF:
    assumes s1: space M = space (Pi}\mp@subsup{M}{M}{}J(\lambda-.N)
    assumes s2: sets M = (P\mp@subsup{i}{M}{}J(\lambda-. N))
    assumes space N=UNIV
    assumes }X\in\mathrm{ sets (PiF (Collect finite) ( }\lambda\mathrm{ -. N))
    shows emeasure (mapmeasure M (\lambda-. N)) X = emeasure M ((fm -` X \cap
extensional J))
    using assms
    by (auto simp: measurable-eqI[OF s1 refl s2 refl] mapmeasure-def emeasure-distr
        fm-measurable space-PiM)
lemma mapmeasure-PiM:
    fixes N::'c measure
    assumes s1: space M = space (Pi}\mp@subsup{M}{M}{}J(\lambda-.N)
    assumes s2: sets M = (Pi
    assumes N: space N=UNIV
    assumes X:X sets M
    shows emeasure M X = emeasure (mapmeasure M ( }\lambda\mathrm{ -. N)) (fm`X)
    unfolding mapmeasure-def
proof (subst emeasure-distr, subst measurable-eqI[OF s1 refl s2 refl], rule fm-measurable)
    from fm-vimage-image-eq[OF <space N=UNIV〉X[simplified s2], simplified
s1[symmetric]]
    show emeasure M X = emeasure M (fm -`fm` }X\cap\mathrm{ space M)
    by simp
    show fm' X 新s (PiF (Collect finite) ( }\lambda\mathrm{ -. N))
    by (rule fm-image-measurable-finite[OF N X[simplified s2]])
```

```
qed simp
```

end
end

```
theory Projective-Limit
    imports Probability Polish-Space Fin-Map
begin
```


4 Projective Limit

Formalization of the Daniell-Kolmogorov theorem.

4.1 (Finite) Product of Measures

TODO: unifiy with $P i_{M}$

definition

```
PiP I M P = extend-measure
    \(\left(\Pi_{E} i \in I\right.\). space \(\left.(M i)\right)\)
    \(\{x .(\) domain \(x \neq\{ \} \vee I=\{ \}) \wedge\)
        finite \((\) domain \(x) \wedge\) domain \(x \subseteq I \wedge(x)_{F} \in\left(\Pi_{E} i \in(\right.\) domain \(x)\). sets \(\left.\left.(M i)\right)\right\}\)
    \((\lambda x\). prod-emb I M (domain \(\left.x)\left(P i_{E}(\operatorname{domain} x)(x)_{F}\right)\right)\)
    \(\left(\lambda x\right.\). emeasure \(\left.(P(\operatorname{domain} x))\left(P i_{E}(\operatorname{domain} x)(x)_{F}\right)\right)\)
```

definition proj-algebra where
proj-algebra $I M=\left(\lambda x\right.$. prod-emb $I M($ domain $\left.x)\left(P i_{E}(\operatorname{domain} x)(x)_{F}\right)\right)$ '
$\{x .($ domain $x \neq\{ \} \vee I=\{ \}) \wedge$
finite $($ domain $x) \wedge$ domain $x \subseteq I \wedge(x)_{F} \in\left(\Pi_{E}\right.$ ídomain x. sets $\left.\left.(M i)\right)\right\}$
lemma proj-algebra-eq-prod-algebra:
proj-algebra I $M=$ prod-algebra I M
proof safe
case goal1 then obtain X where $x=$ prod-emb $I M($ domain $X)\left(P i_{E}\right.$ (domain
X) $\left.(X)_{F}\right)$
domain $X \neq\{ \} \vee I=\{ \}$ finite (domain X) domain $X \subseteq I$
$(X)_{F} \in\left(\Pi_{E}\right.$ i domain X. sets $\left.(M i)\right)$
by (auto simp: proj-algebra-def)
thus ?case by (auto simp: prod-algebra-def intro!: image-eqI[where $x=($ domain
$\left.\left.X,(X)_{F}\right)\right]$)
next
case goal2 then obtain $J X$ where $x=$ prod-emb $I M J\left(P i_{E} J X\right)$
$J \neq\{ \} \vee I=\{ \}$ finite $J J \subseteq I X \in(\Pi j \in J$. sets $(M j))$
by (auto simp: prod-algebra-def)
thus ? case by (auto simp: Pi-def proj-algebra-def intro!: image-eqI[where $x=$ finmap-of
$J X]$)

qed

lemma

> shows proj-algebra-eq:
proj-algebra $I M=\left\{\right.$ prod-emb $I M J\left(P i_{E} J F\right) \mid J F$.
$(J \neq\{ \} \vee I=\{ \}) \wedge$ finite $J \wedge J \subseteq I \wedge(\forall i \in J . F i \in$ sets $(M i))\}$
unfolding proj-algebra-def
proof (rule, blast, rule)
case goal1
then obtain $J F$ where $x=$ prod-emb $I M J\left(P i_{E} J F\right)$
$J \neq\{ \} \vee I=\{ \}$ finite $J J \subseteq I \bigwedge i . i \in J \Longrightarrow F i \in$ sets $(M i)$ by auto
thus ?case by (auto intro!: image-eqI[where $x=$ finmap-of J F] simp: Pi-def)
qed
lemma proj-algebra-eq':
assumes $I \neq\{ \}$
shows proj-algebra $I M=$
$\left\{\right.$ prod-emb $I M J\left(P i_{E} J F\right) \mid J F . J \neq\{ \} \wedge$ finite $J \wedge J \subseteq I \wedge(\forall i \in J . F i$
\in sets $(M i))\}$
unfolding proj-algebra-eq
proof (intro antisym subsetI)
case goal1
then obtain $J F$ where $J F: x=$ prod-emb $I M J\left(P i_{E} J F\right)$
$J \neq\{ \} \vee I=\{ \}$ finite $J J \subseteq I \bigwedge i . i \in J \Longrightarrow F i \in$ sets $(M i)$ by auto
show ?case using assms $J F$ by (auto intro!: exI[where $x=J]$ exI $[$ where $x=F]$)
qed auto
lemma space-PiP[simp]: space (PiP I M P) $=$ space (PiM I M)
by (auto simp: PiP-def space-PiM prod-emb-def intro!: space-extend-measure)
lemma sets-PiP': sets (PiP I M P) $=$ sigma-sets $\left(\Pi_{E} i \in I\right.$. space $\left.(M i)\right)($ proj-algebra
I M)
using prod-algebra-sets-into-space[of I M, simplified proj-algebra-eq-prod-algebra[symmetric]]
unfolding PiP-def proj-algebra-def
by (intro sets-extend-measure) simp
lemma sets-PiP[simp]: sets $($ PiP I M P) $=$ sets (PiM I M)
unfolding sets-PiP' sets-PiM proj-algebra-eq-prod-algebra ..
lemma measurable-PiP1[simp]: measurable $\left(\right.$ PiP I M P) $M^{\prime}=$ measurable $\left(\Pi_{M}\right.$ $i \in I . M$ i) M^{\prime}
unfolding measurable-def by auto
lemma measurable-PiP2[simp]: measurable $M^{\prime}\left(\right.$ PiP I M P) $=$ measurable M^{\prime} $\left(\Pi_{M} i \in I . M i\right)$
unfolding measurable-def by auto

4.2 Projective Family

locale projective-family $=$
fixes $I::^{\prime} i$ set and $P::^{\prime} i$ set $\Rightarrow\left({ }^{\prime} i \Rightarrow{ }^{\prime} a\right)$ measure and $M::\left({ }^{\prime} i \Rightarrow\right.$ 'a measure $)$
assumes projective: $\bigwedge J H . J \subseteq H \Longrightarrow H \subseteq I \Longrightarrow$ finite $H \Longrightarrow$
$(P H)($ prod-emb $H M J X)=(P J) X$
assumes prob-space: $\bigwedge J$. prob-space $(P J)$
assumes proj-sets: $\bigwedge J$. sets $(P J)=$ sets $($ PiM $J M)$
assumes proj-space: $\bigwedge J$. space $(P J)=$ space $($ PiM $J M)$
assumes measure-space: $\bigwedge i$. prob-space ($M i$)

- TODO: generalize definitions from product-prob-space to product-measure-space

begin

lemma measurable-P1[simp]: measurable $(P J) M^{\prime}=$ measurable $\left(\Pi_{M} i \in J . M i\right)$ M^{\prime}
unfolding measurable-def proj-sets proj-space by auto
lemma measurable-P2[simp]: measurable $M^{\prime}(P J)=$ measurable $M^{\prime}\left(\Pi_{M} i \in J\right.$. Mi)
unfolding measurable-def proj-sets proj-space by auto
end
sublocale projective-family $\subseteq M$: prob-space $M i$ for i using measure-space .
sublocale projective-family \subseteq prob-space: prob-space $P J$ for J using prob-space
sublocale projective-family $\subseteq M P:$ product-prob-space M..
context projective-family begin
lemma emeasure-PiP:
assumes finite J
assumes $J \subseteq I$
assumes $A: \bigwedge i . i \in J \Longrightarrow A i \in \operatorname{sets}(M i)$
shows emeasure $(P i P J M P)\left(P i_{E} J A\right)=$ emeasure $(P J)\left(P i_{E} J A\right)$
proof -
$\operatorname{def} f \equiv$ finmap-of $J A$
def $\mu^{\prime} \equiv P J$
have $P i_{E} J($ restrict $A J) \subseteq\left(\Pi_{E} i \in J\right.$. space $\left.(M i)\right)$
proof safe
fix $x j$ assume $x \in P i J$ (restrict $A J) j \in J$
hence $x j \in$ restrict $A J j$ by (auto simp: Pi-def)
also have $\ldots \subseteq$ space $(M j)$ using sets-into-space $A\langle j \in J\rangle$ by auto
finally show $x j \in$ space $(M j)$.
qed
hence emeasure $(P i P J M P)\left(P i_{E} J A\right)=$
emeasure $(P i P J M P)\left(e m b J(\operatorname{domain} f)\left(P i_{E}(\operatorname{domain} f) f\right)\right)$

```
    using assms(1-3) sets-into-space by (auto simp add: f-def prod-emb-id Pi-def)
    also have ... = emeasure ( }PJ\mathrm{ ) (Pi
    proof (subst emeasure-extend-measure[OF PiP-def, of -- \mu ])
    show positive (sets (PiP J M P)) 先 unfolding }\mp@subsup{\mu}{}{\prime}\mathrm{ -def positive-def by auto
    show countably-additive (sets (PiP J M P)) 告 unfolding \mp@subsup{\mu}{}{\prime}-def countably-additive-def
            by (auto simp: suminf-emeasure proj-sets)
    show emeasure (P (domain f)) (P\mp@subsup{i}{E}{}(\operatorname{domain}f)f)=\operatorname{emeasure (PJ) (P\mp@subsup{i}{E}{}J}\mp@code{I}
A)
    using assms by (simp add: f-def Pi-def)
    show f}\in{x.(\mathrm{ domain }x\not={}\veeJ={})\wedge finite (domain x)\wedge domain x\subseteq
^
        (x)}\mp@subsup{)}{F}{}\in(\mp@subsup{\Pi}{E}{}i\indomain x. sets (M i))
        using assms by (auto simp: f-def)
    show (\lambdax. emb J (domain x) (Pi 
J={})^
            finite (domain x)}\wedge domain x\subseteqJ\wedge(x) F G (P\mp@subsup{i}{E}{}(\mathrm{ domain x) M)}}
            Pow (\Pi}\mp@subsup{\Pi}{E}{}i\inJ. space (M i)) by (auto simp: prod-emb-def
    fix }i:::'i=\mp@subsup{F}{F}{\prime}\mathrm{ 'a set
    assume i\in{x.(domain x\not={}\veeJ={})\wedge finite (domain x)\wedge domain x\subseteq
J ^
            (x)}\mp@subsup{)}{F}{}\in(\mp@subsup{\Pi}{E}{}i\in(\mathrm{ domain x). sets (Mi))}
    with assms have
        finite (domain i) domain i\subseteqJ(i)
        by auto
    thus \mp@subsup{\mu}{}{\prime}(emb J (domain i) (P\mp@subsup{i}{E}{}(\mathrm{ domain i) (i) F}))=
        emeasure (P (domain i)) (Pi 
        using assms by (auto simp: projective }\mp@subsup{\mu}{}{\prime}\mathrm{ -def)
    qed
    finally show ?thesis .
qed
lemma PiP-finite:
    assumes finite J
    assumes }J\subseteq
    shows PiP J MP=PJ (is ?P= -)
proof (rule measure-eqI-generator-eq)
    interpret J: finite-product-prob-space M J proof qed fact
    let ?J = {P\mp@subsup{i}{E}{}JE|E.\foralli\inJ.E i \in sets (Mi)}
    let ?F = \lambdai. \Pi}\mp@subsup{|}{E}{}k\inJ.space (Mk
    let ?\Omega=( \Pi
    show Int-stable?J
    by (rule Int-stable-PiE)
    show emeasure ?P (?F -) \not=\infty using assms <finite J\ by (auto simp: emeasure-PiP)
    show ?J \subseteqPow ?\Omega by (auto simp: Pi-iff dest: sets-into-space)
    show sets (PiP J M P) = sigma-sets ? \Omega ? J sets (PJ)= sigma-sets ? \Omega ?J
    using \finite J` proj-sets by (simp-all add: sets-PiM prod-algebra-eq-finite Pi-iff)
    fix }X\mathrm{ assume }X\in\mathrm{ ? J
    then obtain E where [simp]: X=Pie}J J E and E:\foralli\inJ.E i f sets (Mi
by auto
```

with 〈finite J 〉 have $X: X \in$ sets $(P i P J M P)$ by auto show emeasure（PiP J M P）X＝emeasure $(P J) X$ using assms 〈finite J 〉 E by（auto simp：emeasure－PiP）
qed（insert 〈finite J 〉，auto intro！：prod－algebraI－finite）
lemma emeasure－fun－emb［simp］：
assumes $L: J \subseteq L$ finite $L L \subseteq I$ and $X: X \in$ sets $(P i P J M P)$
shows emeasure $($ PiP L MP）$(e m b L J X)=$ emeasure $(P i P J M P) X$
using assms
by（subst PiP－finite）（auto simp：PiP－finite finite－subset projective）
lemma distr－restrict：
assumes $J \subseteq K$ finite $K K \subseteq I$
shows $(P i P J M P)=\operatorname{distr}(P i P K M P)(P i P J M P)(\lambda f$ ．restrict $f J)($ is ？P
$=? D)$
proof（rule measure－eqI）
show sets $($ PiP J M P）$)=$ sets $(\operatorname{distr}($ PiP K M P）$(P i P J M P)(\lambda f$ ．restrict f
$J)$ ）by simp
fix A assume $A \in$ sets $(P i P J M P)$
with assms show emeasure（ PiP J M P）A＝
emeasure（distr（PiP K M P）（PiP J M P）（ λf ．restrict f J））A
by（auto simp：emeasure－distr measurable－restrict－subset space－PiM prod－emb－def［symmetric］）
qed

4．3 Content on Generator

definition

```
\(\mu G^{\prime} A=\)
    (THE \(x . \forall J . J \neq\{ \} \longrightarrow\) finite \(J \longrightarrow J \subseteq I \longrightarrow\)
    \((\forall X \in\) sets \((P i P J M P) . A=e m b I J X \longrightarrow x=\) emeasure \((P i P J M P) X))\)
lemma \(\mu G^{\prime}\)-spec:
    assumes \(J: J \neq\{ \}\) finite \(J \subseteq \subseteq I A=\) emb \(I J X X \in\) sets \((P i P J M P)\)
    shows \(\mu G^{\prime} A=\) emeasure (PiP J MP) X
    unfolding \(\mu G^{\prime}\)-def
proof (intro the-equality allI impI ballI)
    fix \(K Y\) assume \(K: K \neq\{ \}\) finite \(K K \subseteq I A=e m b I K Y Y \in\) sets (PiP \(K\)
\(M P\) )
    have emeasure \((P i P K M P) Y=\) emeasure \((P i P(K \cup J) M P)(e m b(K \cup J)\)
K Y)
        using \(K J\) by \(\operatorname{simp}\)
    also have emb \((K \cup J) K Y=e m b(K \cup J) J X\)
        using \(K J\) by (simp add: prod-emb-injective \([o f ~ K \cup J I])\)
    also have emeasure \((P i P(K \cup J) M P)(e m b(K \cup J) J X)=\) emeasure \((P i P\)
\(J M P) X\)
        using \(K J\) by simp
    finally show emeasure (PiP \(J M P\) ) \(X=\) emeasure (PiP K M P) Y ..
qed (insert J, force)
```

```
lemma }\mu\mp@subsup{G}{}{\prime}-eq
    J\not={}\Longrightarrow finite }J\LongrightarrowJ\subseteqI\LongrightarrowX\in sets (PiP J M P)
    \muG'(emb IJ X) = emeasure (PiPJMP)X
    by (intro }\mu\mp@subsup{G}{}{\prime}\mathrm{ -spec) auto
lemma generator-Ex':
    assumes *: A \in generator
    shows }\existsJX.J\not={}\wedge finite J\wedgeJ\subseteqI\wedgeX\in sets (\Pi\Pi M i\inJ.M i)\wedgeA
emb I J X ^
    \muG'A= emeasure (PiP J M P) X
proof -
    from * obtain }JX\mathrm{ where }J:J\not={} finite J J\subseteqI A=emb I J X X \in set
(PiP J M P)
    unfolding generator-def by auto
    with }\mu\mp@subsup{G}{}{\prime}\mathrm{ -spec[OF this] show ?thesis by auto
qed
lemma generatorE':
    assumes A: A\in generator
```



```
A
    \muG'A= emeasure (PiP J M P) X
proof -
    from generator-Ex'[OF A] obtain X J where J\not={} finite J J\subseteqIX 位的的
(PiP J M P)
        emb I J X = A \muG'A= emeasure (PiP J M P) X by auto
    then show thesis by (intro that) auto
qed
lemma positive- }\mu\mp@subsup{G}{}{\prime}\mathrm{ :
    assumes I\not={}
    shows positive generator }\mu\mp@subsup{G}{}{\prime
proof -
    interpret G!: algebra }\mp@subsup{\Pi}{E}{}i\inI.space (M i) generator by (rule algebra-generator)
fact
    show ?thesis
    proof (intro positive-def[THEN iffD2] conjI ballI)
        from generatorE'[OF G.empty-sets] guess J X . note this[simplified, simp]
        interpret J: finite-product-sigma-finite M J by default fact
        have }X={
            by (rule prod-emb-injective[of J I]) simp-all
        then show }\mu\mp@subsup{G}{}{\prime}{}=0\mathrm{ by simp
    next
        fix }A\mathrm{ assume }A\in\mathrm{ generator
        from generatorE'[OF this] guess J X . note this[simp]
        interpret J: finite-product-sigma-finite M J by default fact
        show 0\leq\muG'A by (simp add: emeasure-nonneg)
    qed
qed
```

```
lemma additive- }\mu\mp@subsup{G}{}{\prime}\mathrm{ :
    assumes I\not={}
    shows additive generator }\mu\mp@subsup{G}{}{\prime
proof -
    interpret G!: algebra }\mp@subsup{\Pi}{E}{}i\inI\mathrm{ . space (M i) generator by (rule algebra-generator)
fact
    show ?thesis
    proof (intro additive-def[THEN iffD2] ballI impI)
        fix A assume A generator with generatorE'guess }JX\mathrm{ . note }J=\mathrm{ this
        fix B assume B\ingenerator with generatorE' guess KY. note K = this
        assume }A\capB={
        have }JK:J\cupK\not={}J\cupK\subseteqI finite ( J\cupK
            using J K by auto
    interpret JK: finite-product-sigma-finite M J\cupK by default fact
    have JK-disj: emb (J\cupK) J X\capemb (J\cupK)KY={}
                apply (rule prod-emb-injective[of J \cup KI])
                apply (insert 〈A\capB={}`JK J K)
                apply (simp-all add: Int prod-emb-Int)
                done
    have AB:A=emb I (J\cupK) (emb (J\cupK)JX)B=emb I (J\cupK)(emb
(J\cupK)KY)
                using J K by simp-all
    then have }\mu\mp@subsup{G}{}{\prime}(A\cupB)=\mu\mp@subsup{G}{}{\prime}(embI(J\cupK)(emb (J\cupK)JX\cupemb (
\cupK)KY))
            by simp
        also have ...= emeasure (PiP (J\cupK)MP)(emb (J\cupK) J X \emb (J
\cupK)K Y)
            using JK J(1, 4)K(1, 4) by (simp add: }\mu\mp@subsup{G}{}{\prime}\mathrm{ -eq Un del: prod-emb-Un)
            also have \ldots= .. }\mp@subsup{G}{}{\prime}A+\mu\mp@subsup{G}{}{\prime}
                using J K JK-disj by (simp add: plus-emeasure[symmetric])
    finally show }\mu\mp@subsup{G}{}{\prime}(A\cupB)=\mu\mp@subsup{G}{}{\prime}A+\mu\mp@subsup{G}{}{\prime}B
    qed
qed
end
```


4.4 Sequences of Finite Maps in Compact Sets

```
locale finmap-seqs-into-compact \(=\)
    fixes \(K::\) nat \(\Rightarrow\left(n a t \Rightarrow_{F}{ }^{\prime} a::\right.\) metric-space \()\) set and \(f:: n a t \Rightarrow\left(n a t \Rightarrow_{F}{ }^{\prime} a\right)\) and
M
    assumes compact: \(\bigwedge n\). compact \((K n)\)
    assumes \(f\)-in- \(K\) : \(\bigwedge n . K n \neq\{ \}\)
    assumes domain-K: \(\bigwedge n . k \in K n \Longrightarrow\) domain \(k=\operatorname{domain}(f n)\)
    assumes proj-in-K:
    \(\wedge t n m . m \geq n \Longrightarrow t \in \operatorname{domain}(f n) \Longrightarrow(f m)_{F} t \in\left(\lambda k .(k)_{F} t\right)\) ' \(K n\)
begin
```

```
lemma proj-in-K':(\existsn.\forallm\geqn.(fm)
    using proj-in-K f-in-K
proof cases
    obtain k where k\inK (Suc 0) using f-in-K by auto
    assume }\foralln.t\not\indomain ( f n
    thus ?thesis
        by (auto intro!: exI[where x=1] image-eqI[OF - <k \inK (Suc 0)\rangle]
            simp:domain-K[OF <k \inK (Suc 0)>])
qed blast
lemma proj-in-KE:
    obtains n where \m. m\geqn\Longrightarrow(fm)
    using proj-in-K' by blast
lemma compact-projset:
    shows compact ((\lambdak. (k) F i)'Kn)
    using continuous-proj compact by (rule compact-continuous-image)
end
```



```
n) ----> l)
proof
    fix ns
    assume subseq s
    from proj-in-KE[of n] guess n0 . note n0 = this
    have }\foralli\geqn0.((f\circs)i\mp@subsup{)}{F}{}n\in(\lambdak.(k\mp@subsup{)}{F}{}n)'Kn
    proof safe
        fix i assume n0 \leqi
        also have ... ss i by (rule seq-suble) fact
        finally have n0 \leqs i.
        with n0 show ((f\circs)i\mp@subsup{)}{F}{}n\in(\lambdak.(k\mp@subsup{)}{F}{}n)`Kn0
            by auto
    qed
    from compactE'[OF compact-projset this ] guess ls rs .
    thus \exists r'. subseq r}\mp@subsup{r}{}{\prime}\wedge(\existsl.(\lambdai.((f\circs\circr')i\mp@subsup{)}{F}{}n)---->l) by (auto simp
o-def)
qed
lemma (in finmap-seqs-into-compact)
    diagonal-tendsto: }\existsl.(\lambdai.(f(\mathrm{ diagseq i)}\mp@subsup{)}{F}{}n)---->
proof -
    have \in0.(f o seqseq i) i=f(diagseq i) unfolding diagseq-def by simp
    from reducer-reduces obtain l where l:(\lambdai.((f\circ seqseq (Suc n)) i) (f n)
----> l
    unfolding seqseq-reducer
    by auto
    have (\lambdai.(f(diagseq (i+Suc n)))}\mp@subsup{)}{F}{}n)
        (\lambdai. ((fo (diagseq o (op + (Suc n)))) i) F n) by (simp add: add-commute)
```

also have . . . =
$\left(\lambda i .((f \text { o }((\text { seqseq }(\text { Suc } n) o(\lambda x \text {. fold-reduce }(\text { Suc } n) x(\text { Suc } n+x))))) i)_{F} n\right)$ unfolding diagseq-seqseq by simp
also have $\ldots=\left(\lambda i .((f \text { o }((\text { seqseq }(\text { Suc } n)))) i)_{F} n\right) o(\lambda x$.fold-reduce (Suc $n)$
$x($ Suc $n+x))$
by (simp add: o-def)
also have ... ----> l
proof (rule LIMSEQ-subseq-LIMSEQ[OF - subseq-diagonal-rest], rule tendstoI)
fix e ::real assume $0<e$
from tendsto $D[$ OF $l<0<e\rangle]$
show eventually $\left(\lambda\right.$. dist $\left.\left(((f \circ \text { seqseq }(S u c n)) x)_{F} n\right) l<e\right)$
sequentially .
qed
finally show ?thesis by (intro exI) (rule LIMSEQ-offset)
qed

4.5 The Daniell-Kolmogorov theorem

locale polish-projective $=$ projective-family I P λ-. borel::'a::polish-space measure for $I:: ' i$ set and P
begin
abbreviation $P i B \equiv(\lambda J P . P i P J(\lambda-$. borel $) P)$

lemma

emeasure-PiB-emb-not-empty:
assumes $I \neq\{ \}$
assumes $X: J \neq\{ \} J \subseteq I$ finite $J \forall i \in J . B i \in$ sets borel
shows emeasure $(P i B I P)\left(e m b I J\left(P i_{E} J B\right)\right)=$ emeasure $(P i B J P)\left(P i_{E} J\right.$
B)
proof -
let ? $\Omega=\Pi_{E} i \in I$. space borel
let $? G=$ generator
interpret G !: algebra? Ω generator by (intro algebra-generator) fact
note μG^{\prime}-mono $=$
G.additive-increasing $\left[\right.$ OF positive $-\mu G^{\prime}[$ OF $\langle I \neq\{ \}\rangle]$ additive $-\mu G^{\prime}[$ OF $\langle I \neq\{ \}\rangle]$, THEN increasingD]
have $\exists \mu .\left(\forall s \in\right.$? $\left.G . \mu s=\mu G^{\prime} s\right) \wedge$ measure-space ? $\Omega($ sigma-sets ? Ω ? $G) \mu$
proof (rule G.caratheodory-empty-continuous[OF positive- μG^{\prime} additive- μG^{\prime}, OF $\langle I \neq\{ \}\rangle$, OF $\langle I \neq\{ \}\rangle])$
fix A assume $A \in ? G$
with generator E^{\prime} guess $J X$.
thus $\mu G^{\prime} A \neq \infty$ by (simp add: PiP-finite)
next
fix Z assume Z : range $Z \subseteq$? G decseq $Z(\bigcap i . Z i)=\{ \}$
then have decseq $\left(\lambda i . \mu G^{\prime}(Z i)\right)$
by (auto intro!: μG^{\prime}-mono simp: decseq-def)
moreover
have $\left(I N F i . \mu G^{\prime}\binom{Z}{i}\right)=0$
proof (rule ccontr)
assume $\left(I N F i . \mu G^{\prime}(Z i)\right) \neq 0($ is $? a \neq 0)$
moreover have $0 \leq$?a
using Z positive $-\mu G^{\prime}[O F\langle I \neq\{ \}\rangle]$ by (auto intro!: INF-greatest simp: positive-def)
ultimately have $0<? a$ by auto
hence ? $a \neq-\infty$ by auto
have $\forall n . \exists J B . J \neq\{ \} \wedge$ finite $J \wedge J \subseteq I \wedge B \in \operatorname{sets}\left(P i_{M} J(\lambda\right.$-. borel $\left.)\right) \wedge$
$Z n=e m b I J B \wedge \mu G^{\prime}(Z n)=$ emeasure $(P i B J P) B$
using Z by (intro allI generator-Ex') auto
then obtain $J^{\prime} B^{\prime}$ where $J^{\prime}: \bigwedge n . J^{\prime} n \neq\{ \} \bigwedge n$. finite $\left(J^{\prime} n\right) \bigwedge n . J^{\prime} n \subseteq I$ $\bigwedge n . B^{\prime} n \in$ sets $\left(\Pi_{M} i \in J^{\prime} n\right.$. borel $)$
and Z-emb: $\bigwedge n . Z n=\operatorname{emb} I\left(J^{\prime} n\right)\left(B^{\prime} n\right)$
unfolding choice-iff by blast
moreover def $J \equiv \lambda n .\left(\bigcup i \leq n . J^{\prime} i\right)$
moreover def $B \equiv \lambda n$.emb $(J n)\left(J^{\prime} n\right)\left(B^{\prime} n\right)$
ultimately have $J: \bigwedge n$. $J n \neq\{ \} \bigwedge n$. finite $(J n) \bigwedge n . J n \subseteq I$
$\wedge n$. $B n \in$ sets $\left(\Pi_{M} i \in J\right.$ n. borel $)$
by auto
have J-mono: $\bigwedge n m . n \leq m \Longrightarrow J n \subseteq J m$ unfolding J-def by force
have $\forall n . \exists j . j \in J n$ using J by blast
then obtain j where $j: \bigwedge n . j n \in J n$
unfolding choice-iff by blast
note $[$ simp $]=\langle\bigwedge n$. finite $(J n)\rangle$
from $J Z$-emb have Z-eq: $\bigwedge n . Z n=e m b I(J n)(B n) \bigwedge n . Z n \in ? G$
unfolding J-def B-def by (subst prod-emb-trans) (insert Z, auto)
have $? a \leq \mu G^{\prime}\left(\begin{array}{ll}Z & 0)\end{array}\right.$ by (auto intro: INF-lower)
also have $\ldots<\infty$ using J by (auto simp: Z-eq μG^{\prime}-eq PiP-finite proj-sets)
finally have $? a \neq \infty$ by simp
have $\bigwedge n$. $\left|\mu G^{\prime}(Z n)\right| \neq \infty$ unfolding Z-eq using J J-mono
by (subst μG^{\prime}-eq) (auto simp: PiP-finite proj-sets μG^{\prime}-eq)
interpret finite-set-sequence J by unfold-locales simp
def $U t n \equiv U n$-to-nat
interpret function-to-finmap J n Utn inv-into (J n) Utn for n
by unfold-locales (auto simp: Utn-def)
def $P^{\prime} \equiv \lambda n$. mapmeasure $n(P(J n))(\lambda$-. borel)
let ${ }^{2} S U P=\lambda n . S U P K:\{K . K \subseteq f m n '(B n) \wedge$ compact $K\}$. emeasure $\left(P^{\prime} n\right) K$
\{
fix n
interpret finite-measure $P\left(\begin{array}{l} \\ \\ n\end{array}\right)$ by unfold-locales
have emeasure $(P(J n))(B n)=$ emeasure $\left(P^{\prime} n\right)\left(f m n n^{\prime}(B n)\right)$
using J
by (auto simp: P^{\prime}-def mapmeasure-PiM proj-space proj-sets)
also
have $\ldots=$?. SUP n

```
    proof (rule inner-regular)
            show emeasure \(\left(P^{\prime} n\right)\left(\right.\) space \(\left.\left(P^{\prime} n\right)\right) \neq \infty\)
            unfolding \(P^{\prime}\)-def
    by (auto simp: \(P^{\prime}\)-def mapmeasure-PiF fm-measurable proj-space proj-sets)
    show sets \(\left(P^{\prime} n\right)=\) sets borel by (simp add: borel-eq-PiF-borel \(P^{\prime}\)-def)
next
    show \(f m n\) ' \(B n \in\) sets borel
            unfolding borel-eq-PiF-borel
            by (auto simp del: \(J\) (2) simp: \(P^{\prime}\)-def fm-image-measurable-finite proj-sets
J)
    qed
    finally
    have emeasure \((P(J n))(B n)=\) ?SUP \(n\) ?SUP \(n \neq \infty\) ?SUP \(n \neq-\infty\)
by auto
    \} note \(R=\) this
    have \(\forall n . \exists K\). emeasure \((P(J n))(B n)-\) emeasure \(\left(P^{\prime} n\right) K \leq 2\) powr
\((-n) * ? a\)
    \(\wedge\) compact \(K \wedge K \subseteq f m n\) ' \(B n\)
    proof
    fix \(n\)
    have emeasure \(\left(P^{\prime} n\right)\left(\right.\) space \(\left.\left(P^{\prime} n\right)\right) \neq \infty\)
        by (simp add: mapmeasure-PiF \(P^{\prime}\)-def proj-space proj-sets)
    then interpret finite-measure \(P^{\prime} n\)..
    show \(\exists K\). emeasure \((P(J n))(B n)-\) emeasure \(\left(P^{\prime} n\right) K \leq\) ereal (2 powr
- real \(n) * ? a \wedge\)
        compact \(K \wedge K \subseteq f m n\) ' \(B n\)
        unfolding \(R\)
    proof (rule ccontr)
        assume \(H\) : \(\neg\left(\exists K^{\prime}\right.\). ?SUP \(n-\) emeasure \(\left(P^{\prime} n\right) K^{\prime} \leq\) ereal (2 powr -
real \(n\) ) * ? a \(\wedge\)
                compact \(\left.K^{\prime} \wedge K^{\prime} \subseteq f m n^{\prime} B n\right)\)
            have ?SUP \(n \leq\) ?SUP \(n-2\) powr \((-n) *\) ?a
            proof (intro SUP-least)
            fix \(K\)
            assume \(K \in\{K . K \subseteq f m n\) ' \(B n \wedge\) compact \(K\}\)
            with \(H\) have \(\neg\) ?SUP \(n-\) emeasure \(\left(P^{\prime} n\right) K \leq 2\) powr \((-n) *\) ?a
                by auto
            hence ?SUP \(n-\) emeasure \(\left(P^{\prime} n\right) K>2 \operatorname{powr}(-n) *\) ?a
                unfolding not-less[symmetric] by simp
            hence ?SUP \(n-2\) powr \((-n) *\) ? \(a>\) emeasure \(\left(P^{\prime} n\right) K\)
                using \(\langle 0<\) ? a \(\quad\) by (auto simp add: ereal-less-minus-iff ac-simps)
            thus ?SUP \(n-2\) powr \((-n) *\) ? \(a \geq\) emeasure \(\left(P^{\prime} n\right) K\) by simp
            qed
    hence ? \(S U P n+0 \leq\) ?SUP \(n-(2 \operatorname{powr}(-n) * ? a)\) using \(\langle 0<? a\rangle\) by
simp
            hence ?SUP \(n+0 \leq\) ?SUP \(n+-\) (2 powr \((-n)\) * ?a) unfolding
minus-ereal-def .
    hence \(0 \leq-(2\) powr \((-n) *\) ? \(a)\)
                using 〈? \(S U P-\neq \infty\) 〉 \(\langle ? S U P-\neq-\infty\rangle\)
```

> by (subst (asm) ereal-add-le-add-iff) (auto simp:)
moreover have ereal (2 powr - real n) $* ? a>0$ using $\langle 0<? a\rangle$
by (auto simp: ereal-zero-less-0-iff)
ultimately show False by simp
qed
qed
then obtain K^{\prime} where K^{\prime} :
\bigwedge n. emeasure $(P(J n))(B n)-$ emeasure $\left(P^{\prime} n\right)\left(K^{\prime} n\right) \leq$ ereal (2 powr

- real $n) * ? a$
^n. compact $\left(K^{\prime} n\right) \bigwedge n . K^{\prime} n \subseteq f m n ' B n$
unfolding choice-iff by blast
def $K \equiv \lambda n$.fm $n-{ }^{\prime} K^{\prime} n \cap$ space ($P(J n)$)
have K-sets: $\bigwedge n . K n \in \operatorname{sets}\left(P i_{M}(J n)(\lambda\right.$-. borel $\left.)\right)$
unfolding K-def proj-space
using compact-imp-closed $\left[\right.$ OF 〈compact ($\left.\left.\left.K^{\prime}-\right)\right\rangle\right]$
by (intro measurable-sets[OF fm-measurable, of - Collect finite])
(auto simp: borel-eq-PiF-borel[symmetric])
have $\bigwedge n . K n \subseteq B n$
proof
fix $x n$
assume $x \in K n$ hence $f m$-in: fm $n x \in f m n$ ' $B n$
using K^{\prime} by (force simp: K-def)
show $x \in B n$
apply (rule inj-on-image-mem-iff[OF inj-on-fm - fm-in])
using $\left\langle x \in K{ }_{n}\right\rangle K$-sets $J[$ of $n]$ sets-into-space
apply (auto simp: proj-space)
using $J[$ of $n]$ sets-into-space apply auto
done
qed
$\operatorname{def} Z^{\prime} \equiv \lambda n . e m b I(J n)(K n)$
have $Z^{\prime}: \wedge n . Z^{\prime} n \subseteq Z n$
unfolding $Z-e q$ unfolding $Z^{\prime}-d e f$
proof (rule prod-emb-subsetI, safe)
fix $n x$ assume $x \in K n$
hence fm $n x \in K^{\prime} n x \in \operatorname{space}\left(P i_{M}(J n)(\lambda\right.$-. borel $\left.)\right)$
by (simp-all add: K-def proj-space)
note this(1)
also have $K^{\prime} n \subseteq f m n{ }^{\prime} B n$ by (simp add: K^{\prime})
finally have $f m n x \in f m n$ ' $B n$.
thus $x \in B n$
proof safe
fix y assume $y \in B n$
moreover
hence $y \in \operatorname{space}\left(P i_{M}(J n)(\lambda\right.$-. borel $\left.)\right)$ using J sets-into-space $[$ of B n P
($J n$)
by (auto simp add: proj-space proj-sets)
assume $f m n x=f m n y$
note inj-onD $[$ OF inj-on-fm[OF space-borel],
OF $\langle f m n x=$ fm $n y\rangle\langle x \in$ space -$\rangle\langle y \in$ space -\rangle]

```
            ultimately show }x\inBn\mathrm{ by simp
        qed
    qed
    {fix n
    have Z' n \in?G using K' unfolding Z'-def
        apply (intro generatorI'[OF J(1-3)])
        unfolding K-def proj-space
        apply (rule measurable-sets[OF fm-measurable[of - Collect finite]])
    apply (auto simp add: P'-def borel-eq-PiF-borel[symmetric] compact-imp-closed)
        done
    }
    def Y\equiv\lambdan.\bigcapi\in{1..n}. Z' }\mp@subsup{Z}{}{\prime
    hence }\bigwedgenk.Y(n+k)\subseteqYn by (induct-tac k)(auto simp: Y-def
    hence Y-mono: \n m.n\leqm\LongrightarrowYm\subseteqYn by (auto simp:le-iff-add)
    have Y-Z': \n.n\geq1\LongrightarrowYn\subseteq Z' n by (auto simp: Y-def)
    hence Y-Z: \n.n\geq1\LongrightarrowYn\subseteqZn using Z' by auto
    have Y-notempty: \n.n\geq1\Longrightarrow(Yn)\not={}
    proof -
    fix n::nat assume n\geq1 hence }Yn\subseteqZn\mathrm{ by fact
        have Yn=(\bigcapi\in{1..n}.emb I (J n) (emb (J n) (J i) (K i))) using J
J-mono
            by (auto simp: Y-def Z'-def)
            also have ... = prod-emb I (\lambda-. borel) (J n) (\bigcapi\in{1..n}.emb (J n) (J i)
(K i))
            using <n\geq 1>
            by (subst prod-emb-INT) auto
            finally
            have Y-emb:
                Y n=prod-emb I ( }\lambda\mathrm{ -. borel ) (J n)
                    (\cap i\in{1..n}. prod-emb (J n) (\lambda-. borel) (J i) (Ki)).
    hence Yn\in?G using J J-mono K-sets }\n\geq1> by (intro generatorI[O
    Y-emb]) auto
    hence }|\mu\mp@subsup{G}{}{\prime}(Yn)|\not=\infty\mathrm{ unfolding Y-emb using J J-mono K-sets <n }\geq1
            by (subst }\mu\mp@subsup{G}{}{\prime}\mathrm{ -eq) (auto simp: PiP-finite proj-sets }\mu\mp@subsup{G}{}{\prime}-eq
    interpret finite-measure (PiP (J n) (\lambda-. borel) P)
    proof
            have emeasure (PiP (J n) (\lambda-. borel) P) (J n -> E space borel)}\not==
                using J by (subst emeasure-PiP) auto
            thus emeasure (PiP (J n) (\lambda-. borel) P) (space (PiP (J n) (\lambda-. borel)
P))}\not=
            by (simp add: space-PiM)
    qed
    have }\mu\mp@subsup{G}{}{\prime}(Zn)-\mu\mp@subsup{G}{}{\prime}(Yn)=\mu\mp@subsup{G}{}{\prime}(Zn-Yn)\mathrm{ using }JJ\mathrm{ -mono K-sets
<n\geq1>
            apply (intro G.subtractive[OF positive- }\mu\mp@subsup{G}{}{\prime}\mathrm{ additive- }\mu\mp@subsup{G}{}{\prime}\mathrm{ ,
                OF\langleI\not={}\rangle\langleI\not={}\rangle\langleYn\in?G\rangle\langleZ n\in?G\rangle\langleYn\subseteqZ n`, symmetric])
            apply (subst }\mu\mp@subsup{G}{}{\prime}\mathrm{ -spec [OF <J n = {}><finite (J n)〉<J n }\subseteqI\rangleY-emb]
            apply auto done
    also have subs:Z n-Yn\subseteq(\bigcupi\in{1..n}.(Z i- Z'i)) using Z'Z<n
```

≥ 11
unfolding Y-def
apply (auto simp: decseq-def Y-def)
proof -
case goal1 hence $x \in Z$ xa by (metis set-mp)
with goal1 show $x \in Z^{\prime} x a$ by auto
qed
have $Z n-Y n \in$? $G\left(\bigcup i \in\{1 . . n\} .\left(Z i-Z^{\prime} i\right)\right) \in$? G
using $\left\langle Z^{\prime}-\in ? G\right\rangle\langle Z-\in ? G\rangle\langle Y-\in$? $G\rangle$ by auto
hence $\mu G^{\prime}(Z n-Y n) \leq \mu G^{\prime}\left(\bigcup i \in\{1 . . n\}\right.$. $\left.\left(Z i-Z^{\prime} i\right)\right)$
using subs G.additive-increasing[OF positive- $\mu G^{\prime}[O F\langle I \neq\{ \}\rangle]$ additive- $\mu G^{\prime}[O F$
$\langle I \neq\{ \}\rangle]]$
unfolding increasing-def by auto
also have $\ldots \leq\left(\sum i \in\{1 . . n\} . \mu G^{\prime}\left(Z i-Z^{\prime} i\right)\right)$ using $\langle Z-\in$? $G\rangle\left\langle Z^{\prime}-\in\right.$? $G>$
by (intro G.subadditive[OF positive- μG^{\prime} additive $-\mu G^{\prime}$, OF $\langle I \neq\{ \}\rangle\langle I \neq$ \{\} >]) auto
also have $\ldots \leq\left(\sum i \in\{1 . . n\}\right.$. 2 powr -real $i *$? $\left.a\right)$
proof (rule setsum-mono)
fix i assume $i \in\{1 . . n\}$ hence $i \leq n$ by simp
have $\mu G^{\prime}\left(Z i-Z^{\prime} i\right)=\mu G^{\prime}($ prod-emb $I(\lambda$-. borel $)(J i)(B i-K i))$
unfolding Z^{\prime}-def Z-eq by simp
also have $\ldots=P(J i)(B i-K i)$
apply (subst μG^{\prime}-eq) using J K-sets apply auto
apply (subst PiP-finite) apply auto
done
also have $\ldots=P(J i)(B i)-P(J i)(K i)$
apply (subst emeasure-Diff) using K-sets $J\langle K-\subseteq B$-〉 apply (auto
simp: proj-sets)
done
also have $\ldots=P(J i)(B i)-P^{\prime} i\left(K^{\prime} i\right)$
unfolding K-def P^{\prime}-def
by (auto simp: mapmeasure-PiF proj-space proj-sets borel-eq-PiF-borel[symmetric]
compact-imp-closed $\left[O F\left\langle\operatorname{compact}\left(K^{\prime}-\right)\right\rangle\right]$ space-PiM)
also have $\ldots \leq$ ereal (2 powr - real $i) *$? a using $K^{\prime}(1)[$ of $i]$.
finally show $\mu G^{\prime}\left(Z i-Z^{\prime} i\right) \leq(2$ powr - real $i) *$? a.
qed
also have $\ldots=\left(\sum i \in\{1 . . n\}\right.$. ereal (2 powr -real $\left.i\right) * \operatorname{ereal}($ real ? a $)$)
using $\langle ? a \neq \infty\rangle\langle ? a \neq-\infty$) by (subst ereal-real') auto
also have $\ldots=\operatorname{ereal}\left(\sum i \in\{1 . . n\}\right.$. (2 powr -real $\left.i\right) *($ real ? a $)$) by simp
also have $\ldots=\operatorname{ereal}\left(\left(\sum i \in\{1 . . n\} .(2\right.\right.$ powr - real $\left.i)\right) *$ real ?a)
by (simp add: setsum-left-distrib)
also have $\ldots<\operatorname{ereal}(1 *$ real ?a) unfolding less-ereal.simps
proof (rule mult-strict-right-mono)
have $\left(\sum i \in\{1 . . n\}\right.$. 2 powr - real $\left.i\right)=\left(\sum i \in\{1 . .<\right.$ Suc n $\left.\} .(1 / 2)^{\wedge} i\right)$
by (rule setsum-cong)
(auto simp: powr-realpow[symmetric] powr-minus powr-divide inverse-eq-divide)
also have $\{1 . .<$ Suc $n\}=\{0 . .<$ Suc $n\}-\{0\}$ by auto
also have setsum $(o)^{\wedge}(1 / 2::$ real $\left.)\right)(\{0 . .<$ Suc $n\}-\{0\})=$

```
\(\operatorname{setsum}\left(o p^{\wedge}(1 / 2)\right)(\{0 . .<S u c n\})-1\) by (auto simp: setsum-diff1)
```

 also have \(\ldots<1\) by (subst sumr-geometric) auto
 finally show \(\left(\sum i=1\right.\)..n. 2 powr - real \(\left.i\right)<1\).
 qed (auto simp:
 \(\langle 0<? a\rangle\langle ? a \neq \infty\rangle\langle ? a \neq-\infty\) ereal-less-real-iff zero-ereal-def[symmetric])
 also have \(\ldots=? a\) using \(\langle 0<? a\rangle\langle ? a \neq \infty\rangle\) by (auto simp: ereal-real')
 also have \(\ldots \leq \mu G^{\prime}(Z n)\) by (auto intro: INF-lower)
 finally have \(\mu G^{\prime}(Z n)-\mu G^{\prime}(Y n)<\mu G^{\prime}(Z n)\).
 hence \(R\) : \(\mu G^{\prime}(Z n)<\mu G^{\prime}(Z n)+\mu G^{\prime}(Y n)\)
 using \(\langle | \mu G^{\prime}(Y n)|\neq \infty\rangle\) by (simp add: ereal-minus-less)
 have \(0 \leq\left(-\mu G^{\prime}(Z n)\right)+\mu G^{\prime}(Z n)\) using \(\langle | \mu G^{\prime}(Z n)|\neq \infty\rangle\) by auto
 also have \(\ldots<\left(-\mu G^{\prime}(Z n)\right)+\left(\mu G^{\prime}(Z n)+\mu G^{\prime}(Y n)\right)\)
 apply (rule ereal-less-add \([O F-R])\) using \(\langle | \mu G^{\prime}(Z n)|\neq \infty\rangle\) by auto
 finally have \(\mu G^{\prime}(Y n)>0\)
 using \(\langle | \mu G^{\prime}(Z n) \mid \neq \infty\) by (auto simp: ac-simps zero-ereal-def[symmetric])
 thus \(Y n \neq\{ \}\) using positive- \(\mu G^{\prime}\langle I \neq\{ \}\rangle\) by (auto simp add: positive-def)
 qed
hence $\forall n \in\{1 ..\} . \exists y . y \in Y n$ by auto
then obtain y where $y: \bigwedge n . n \geq 1 \Longrightarrow y n \in Y n$ unfolding bchoice-iff
by force
\{
fix t and n m::nat
assume $1 \leq n n \leq m$ hence $1 \leq m$ by simp
from Y-mono $[O F\langle m \geq n\rangle] y[O F\langle 1 \leq m\rangle]$ have $y m \in Y n$ by auto
also have $\ldots \subseteq Z^{\prime} n$ using $Y-Z^{\prime}[O F\langle 1 \leq n\rangle]$.
finally
have $f m n($ restrict $(y m)(J n)) \in K^{\prime} n$
unfolding Z^{\prime}-def K-def prod-emb-iff by (simp add: Z^{\prime}-def K-def prod-emb-iff)
moreover have finmap-of $(J n)$ (restrict $(y m)(J n))=$ finmap-of $(J n)$
($y \mathrm{~m}$)
using J by (simp add: fm-def)
ultimately have $f m n(y m) \in K^{\prime} n$ by simp
$\}$ note fm - in - $K^{\prime}=$ this
interpret finmap-seqs-into-compact $\lambda n . K^{\prime}(S u c ~ n) ~ \lambda k . f m(S u c k)(y$ (Suc
$k)$) borel
proof
fix n show compact $\left(K^{\prime} n\right)$ by fact
next
fix n
from Y-mono[of n Suc n] y [of Suc n] have $y($ Suc $n) \in Y$ (Suc n) by auto
also have $\ldots \subseteq Z^{\prime}\left(\right.$ Suc n) using $Y-Z^{\prime}$ by auto
finally
have $f m($ Suc $n)($ restrict $(y($ Suc $n))(J($ Suc $n))) \in K^{\prime}($ Suc $n)$
unfolding Z^{\prime}-def K-def prod-emb-iff by (simp add: Z^{\prime}-def K-def prod-emb-iff)
thus $K^{\prime}($ Suc $n) \neq\{ \}$ by auto
fix k
assume $k \in K^{\prime}$ (Suc n)
with $K^{\prime}[$ of Suc $n]$ sets-into-space have $k \in f m$ (Suc n) ' B (Suc n) by auto
then obtain b where $k=f m$ (Suc n) b by auto

```
        thus domain k= domain (fm (Suc n) (y (Suc n)))
        by (simp-all add: fm-def)
    next
        fix }t\mathrm{ and n m::nat
        assume n\leqm hence Suc n\leqSuc m by simp
        assume t\indomain (fm (Suc n) (y (Suc n)))
        then obtain }j\mathrm{ where j:t=Utn j j G (Suc n) by auto
        hence j J (Suc m) using J-mono[OF <Suc n \leqSuc m»] by auto
        have img: fm (Suc n) (y (Suc m)) \in K' (Suc n) using <n\leqm>
        by (intro fm-in-K') simp-all
    show (fm (Suc m) (y (Suc m))}\mp@subsup{)}{F}{}t\in(\lambdak.(k\mp@subsup{)}{F}{}t)`\mp@subsup{K}{}{\prime}(Suc n
        apply (rule image-eqI[OF - img])
        using <j\inJ (Suc n)\rangle\langlej\inJ (Suc m)>
        unfolding j by (subst proj-fm, auto)+
    qed
    have \forallt.\existsz. (\lambdai.(fm (Suc (diagseq i)) (y(Suc (diagseq i))))}\mp@subsup{)}{F}{}t)----> 
        using diagonal-tendsto ..
then obtain z where z
    \t. (\lambdai. (fm (Suc (diagseq i)) (y(Suc (diagseq i)))) F t) ----> zt
    unfolding choice-iff by blast
    {
    fix n :: nat assume n\geq1
    have \bigwedgei.domain (fm n (y (Suc (diagseq i))))=domain (finmap-of (Utn`
J n) z)
    by simp
    moreover
    {
        fix }
    assume t: t\indomain (finmap-of (Utn'J n) z)
    hence t\inUtn' J n by simp
    then obtain }j\mathrm{ where j:t=Utn j j GJn by auto
    have (\lambdai. (fmn (y (Suc (diagseq i))))}\mp@subsup{)}{F}{}t)---->z
        apply (subst (2) tendsto-iff, subst eventually-sequentially)
    proof safe
        fix e :: real assume 0<e
        {fix ix assume i\geqnt\indomain (fmnx)
            moreover
            hence t\indomain (fm i x) using J-mono[OF〈i \geq n»] by auto
            ultimately have (fmix)
                    using j by (auto simp: proj-fm dest!:
                    Un-to-nat-injectiveD[simplified Utn-def[symmetric]])
    } note index-shift = this
    have I:\bigwedgei. i\geqn\LongrightarrowSuc(diagseq i) \geqn
                apply (rule le-SucI)
                apply (rule order-trans) apply simp
                apply (rule seq-suble[OF subseq-diagseq])
                done
            from z
            have }\existsN.\foralli\geqN.dist ((fm (Suc (diagseq i)) (y (Suc (diagseq i)))) ( F t),
```

$$
(z t)<e
$$

unfolding tendsto-iff eventually-sequentially using $\langle 0<e\rangle$ by auto then obtain N where $N: \bigwedge i . i \geq N \Longrightarrow$
dist $\left((\text { fm }(\text { Suc }(\text { diagseq } i))(y(\text { Suc }(\text { diagseq } i))))_{F} t\right)(z t)<e$ by auto show $\exists N . \forall n a \geq N$. dist $\left((f m n(y(S u c(d i a g s e q ~ n a))))_{F} t\right)(z t)<e$
proof (rule exI[where $x=\max N n$], safe)
fix $n a$ assume $\max N n \leq n a$
hence $\operatorname{dist}\left((f m n(y(S u c(\text { diagseq } n a))))_{F} t\right)(z t)=$ dist $\left((f m(\text { Suc }(\text { diagseq } n a))(y(\text { Suc }(\text { diagseq } n a))))_{F} t\right)(z t)$
using t
by (subst index-shift [OF I]) auto
also have $\ldots<e$ using $\langle\max N n \leq n a\rangle$ by (intro N) simp
finally show $\operatorname{dist}\left((\operatorname{fm} n(y(\operatorname{Suc}(\text { diagseq } n a))))_{F} t\right)(z t)<e$.
qed
qed
hence $\left(\lambda i .(\operatorname{fm} n(y(S u c(\text { diagseq } i))))_{F} t\right)---->($ finmap-of $(U t n ' J$
n) $z)_{F} t$
by (simp add: tendsto-intros)
\} ultimately
have (λ i. fm $n(y($ Suc (diagseq $i))))--->$ finmap-of (Utn' $J n) z$ by (rule tendsto-finmap)
hence $((\lambda i . f m n(y(S u c($ diagseq $i)))) o(\lambda i . i+n))---->$ finmap-of $(U t n ' J n) z$
by (intro lim-subseq) (simp add: subseq-def)
moreover
have $\left(\forall i .((\lambda i . f m n(y(S u c(\right.$ diagseq $\left.i)))) o(\lambda i . i+n)) i \in K^{\prime} n\right)$
apply (auto simp add: o-def intro!: fm-in- $K^{\prime}\langle 1 \leq n\rangle$ le-SucI)
apply (rule le-trans)
apply (rule le-add2)
using seq-suble[OF subseq-diagseq]
apply auto
done
moreover
from 〈compact $\left.\left(K^{\prime} n\right)\right\rangle$ have closed $\left(K^{\prime} n\right)$ by (rule compact-imp-closed)
ultimately
have finmap-of (Utn ' $J n$) $z \in K^{\prime} n$
unfolding closed-sequential-limits by blast
also have finmap-of (Utn'Jn)z=fmn(גi.z(Utn i))
by (auto simp: finmap-eq-iff fm-def compose-def f-inv-into-f)
finally have $f m n(\lambda i . z(U t n i)) \in K^{\prime} n$.

moreover

let ? $J=\bigcup n . J n$
have $(? J \cap J n)=J n$ by auto
ultimately have restrict $(\lambda i . z(U t n i))(? J \cap J n) \in K n$
unfolding K-def by (auto simp: proj-space space-PiM)
hence restrict ($\lambda i . z(U t n i)) ? J \in Z^{\prime} n$ unfolding Z^{\prime}-def
using J by (auto simp: prod-emb-def extensional-def)
also have $\ldots \subseteq Z n$ using Z^{\prime} by simp
finally have restrict $(\lambda i . z(U t n i)) ? J \in Z n$.

```
    } note in-Z = this
    hence (\bigcapi\in{1..}. Z i) ={{ by auto
    hence (\bigcapi.Z i) \not={} using Z INT-decseq-offset[OF〈decseq Z〉] by simp
    thus False using Z by simp
    qed
    ultimately show (\lambdai. }\mu\mp@subsup{G}{}{\prime}(Z Z i))----> 
    using LIMSEQ-ereal-INFI[of \lambdai. }\mu\mp@subsup{G}{}{\prime}(Z Z i)] by simp
qed
    then guess }\mu\mathrm{ .. note }\mu=\mathrm{ this
    def f}\equiv\mp@code{finmap-of J B
    have emeasure (PiB I P) (emb IJ (P\mp@subsup{i}{E}{}J B)) =
    emeasure (PiB I P) (emb I (domain f) (P\mp@subsup{i}{E}{}(\operatorname{domain}f)(f)}\mp@subsup{)}{F}{})
    using assms sets-into-space
    by (simp add: f-def Pi-def)
    also have ... = emeasure (PiB J P) (Pi 
    proof (subst emeasure-extend-measure[OF PiP-def, of I \lambda-. borel }\mu]
    show positive (sets (PiB I P)) \mu countably-additive (sets (PiB I P)) \mu
        using }\mu\mathrm{ unfolding sets-PiP sets-PiM-generator [OF \I# {}>] by (auto simp:
measure-space-def)
    next
        show f\in{x.(domain x}\not={}\veeI={})\wedge finite (domain x)\wedge domain x\subseteq
^
            (x)}\mp@subsup{)}{F}{}\in(\mp@subsup{\Pi}{E}{}i\in\mathrm{ domain x. sets borel )}
            using assms by (auto simp: f-def)
    next
    show (\lambdax. emb I (domain x) (Pi ( 
        {x.(domain x 
            (x)}\mp@subsup{)}{F}{}\in(\mp@subsup{\Pi}{E}{}\mathrm{ i ídomain x. sets borel )}
        \subseteq P \text { Pow ( } \Pi _ { E } i \in I . \text { space borel) by (auto simp: prod-emb-def)}
    next
    fix }i::'i=\mp@subsup{#}{F}{}\mp@subsup{}{}{\prime}a\mathrm{ set
    assume i: i\in{x.(domain x\not={}\veeI={})\wedge finite(domain x)^domain x
\subseteq I \wedge
            (x\mp@subsup{)}{F}{}\in(\mp@subsup{\Pi}{E}{}}i\indomain x. sets borel ) }
    hence emb I (domain i) (P\mp@subsup{i}{E}{}}\mathrm{ (domain i) (i) F) f generator
        using assms by (auto intro!: generatorI')
    hence }\mu(\mathrm{ emb I (domain i) (Pi (domain i) (i)
        \muG'(emb I (domain i) (Pi ( (domain i) (i)F})\mathrm{ )
        using }\mu\mathrm{ by simp
    also have ... = emeasure (P (domain i)) (P\mp@subsup{i}{E}{}(\mathrm{ domain i) (i) F})
        using i assms proj-sets by (subst }\mu\mp@subsup{G}{}{\prime}-eq) (auto simp: \muG'-eq PiP-finite
    finally show }\mu(embI(domain i) (P\mp@subsup{i}{E}{}(\mathrm{ domain i) (i)F}))
        emeasure (P (domain i)) (P\mp@subsup{i}{E}{}}(\mathrm{ domain i) (i) F).
    next
    show emeasure (P(domain f)) (Pi 
(P\mp@subsup{i}{E}{}JB)
    using assms by (simp add: f-def PiP-finite Pi-def)
    qed
    finally show ?thesis .
```

end
sublocale polish-projective \subseteq P: prob-space (PiB I P)
proof
show emeasure $($ PiB I P) (space $($ PiB I P $))=1$
proof cases
assume $I=\{ \}$ then show ?thesis
by (simp add: space-PiM-empty PiP-finite prob-space.emeasure-space-1)
next
assume $I \neq\{ \}$
then obtain i where $i \in I$ by auto
moreover then have R : (space $\left(\right.$ PiB I P)) $=\left(\operatorname{emb} I\{i\}\left(P i_{E}\{i\}(\lambda\right.\right.$-. space borel)))
by (auto simp: prod-emb-def space-PiM)
moreover have extensional $\{i\}=\operatorname{space}(P\{i\})$ by (simp add: proj-space space-PiM)
ultimately show ?thesis
apply (subst R)
apply (subst emeasure-PiB-emb-not-empty)
apply (auto simp: PiP-finite prob-space.emeasure-space-1)
done
qed
qed
context polish-projective begin
lemma emeasure-PiB-emb:
assumes $X: J \subseteq I$ finite $J \forall i \in J . B i \in$ sets borel
shows emeasure $(P i B I P)\left(e m b I J\left(P i_{E} J B\right)\right)=$ emeasure $(P J)\left(P i_{E} J B\right)$
proof cases
assume $J=\{ \}$
moreover have emb $I\}\{\lambda x$. undefined $\}=\operatorname{space}($ PiB I P)
by (auto simp: space-PiM prod-emb-def)
moreover have $\{\lambda$ x. undefined $\}=$ space $(P i B\} P)$
by (auto simp: space-PiM prod-emb-def)
ultimately show ?thesis
by (simp add: P.emeasure-space-1 PiP-finite prob-space.emeasure-space-1 del:
space-PiP)
next
assume $J \neq\{ \}$ with X show ?thesis
by (subst emeasure-PiB-emb-not-empty) (auto simp: PiP-finite)
qed
lemma measure-PiB-emb:
assumes $J \subseteq I$ finite $J \forall i \in J . B i \in$ sets borel
shows measure $(P i B I P)\left(e m b I J\left(P i_{E} J B\right)\right)=$ measure $(P J)\left(P i_{E} J B\right)$
using emeasure-PiB-emb[OF assms]
unfolding emeasure-eq-measure PiP-finite $[O F\langle$ finite $J\rangle\langle J \subseteq I\rangle]$ prob-space.emeasure-eq-measure by simp
end
end

References

[1] F. Immler. Generic construction of probability spaces for paths of stochastic processes in Isabelle/HOL. Master's thesis, Technische Universität München, October 2012. Submitted.

