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Abstract

Stochastic processes are used in probability theory to describe the evolution of
random systems over time. The principal mathematical problem is the construction
of a probability space for the paths of stochastic processes. The Daniell-Kolmogorov
theorem solves this problem: it shows how a family of finite-dimensional distribu-
tions defines the distribution of the stochastic process. The construction is generic,
i.e., it works for discrete time as well as for continuous time.
Starting from the existing formalizations of measure theory and products of proba-

bility spaces in Isabelle/HOL, we provide a formal proof of the Daniell-Kolmogorov
theorem in Isabelle/HOL. This requires us to formalize concepts from topology,
namely polish spaces and regularity of measures on polish spaces.
These results can serve as a foundation to formalize for example discrete-time or

continuous-time Markov chains, Markov decision processes, or physical phenomena
like Brownian motion.
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1 Introduction

Stochastic processes are a mathematical model to describe the evolution of the state
of a random system over time. This work is about formalized analysis of stochastic
processes. The only existing formalization of stochastic processes is limited to dis-
crete time and space, we extend this by providing a formal proof of a well-known
mathematical result which is necessary to analyze stochastic processes with contin-
uous time and space.

1.1 Stochastic Processes

Science often constructs models of the real world in order to analyze them. If
the state of a system evolves randomly in time, the system can be modeled as a
stochastic process. Stochastic processes can be applied to diverse fields: For ex-
ample, economists can model financial markets as stochastic processes, describing
the evolution of prices. Stochastic processes can be used to describe the size of
populations, when biologists model the birth and death of individuals probabilisti-
cally. Queuing theory has various applications in telecommunication and computer
science and uses stochastic processes to describe the length of queues.
A concrete example of a stochastic process is given in figure 1.1 which depicts a

very simple weather forecasting model (adapted from Kulkarni [15]): It consists of
two states, warm and cold weather. Ignoring the past weather, there is a chance
of 80% that the weather is warm tomorrow if it is warm today; if it is cold today,
there is a chance of 30% that it stays cold. Switching from one day to the next, one
follows transitions with the probability given by the labels on the arrows.

warm cold

0.8

0.2

0.3

0.7

Figure 1.1: A stochastic process modeling weather forecast
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days

temperature

cold

warm

1 2 3 4 5 6

Figure 1.2: Example path of stochastic process with discrete time and state space

time

temperature

Figure 1.3: Example path of stochastic process with continuous time and state space

1.2 Paths of Stochastic Processes

In order to analyze stochastic processes, one investigates the probabilities of so-called
paths. A path is the description of one possible behavior of the system, that means
a path is a function that maps time to the state of the system at that time. The
graph in figure 1.2 depicts an example of one possible path of the weather forecasting
stochastic process. As time advances in discrete steps, time is represented by the
natural numbers.
In our concrete example, it is easy to assign probabilities to paths: One multiplies

the probabilities of the transitions needed to form the path, e.g., the probability for
the path warm-warm-warm-cold-warm-cold is 0.8 · 0.8 · 0.2 · 0.7 · 0.2 = 1.79%.
Beware that our concrete example is a stochastic process with discrete time and

state space, but stochastic processes may also – especially for modeling real-world
phenomena – consist of continuous time and state space. Considering our weather
forecasting example, it might be more appropriate or accurate to describe the evolu-
tion of temperature continuously. An example of a possible path of such a stochastic
process is depicted in figure 1.3.

2



1.3 Probability Spaces for Paths of Stochastic Processes

1.3 Probability Spaces for Paths of Stochastic Processes

The representation of stochastic processes is more involved in the continuous than in
the discrete case. The same holds for the assignment of probabilities to paths. Nev-
ertheless stochastic processes are well studied objects in mathematics, the analysis
of stochastic processes is approached by constructing probability spaces for paths.

Probability spaces are a necessary concept in probability theory because assigning
probabilities to outcomes of random experiments is a delicate task: It is difficult
(or even impossible) to assign consistent probabilities to arbitrary sets of outcomes
of random experiments. Probability spaces organize these outcomes (which are
paths in the case of stochastic processes) in a way that makes it possible to assign
consistent probabilities to them.

1.4 Formalization in Isabelle/HOL

The fact that it is necessary to introduce a nontrivial concept (probability spaces)
in order to avoid inconsistencies shows that stochastic processes need to be analyzed
with great care. It is therefore desirable to conduct the whole analysis of probability
spaces for stochastic processes in a rigorous calculus. A rigorous calculus makes
sure that every reasoning is based on purely syntactic transformations in a formal
language. Performing mathematics in a rigorous calculus is called formalization of
mathematics.

The fact that one works with purely syntactic transformations allows to formalize
mathematics in computer systems. One computer system that is used for formal-
ization of mathematics is the interactive theorem prover Isabelle/HOL. Interactive
theorem provers are programs that allow the user to state theorems and guide the
system through a proof. Proofs are mechanically checked, therefore an analysis
carried out in an interactive theorem prover is highly reliable.

Formalized mathematics can be used to analyze models with infinite state space
or to reason symbolically about parametric systems. This is not possible in other
computer-assisted techniques like for example model checking which is usually re-
stricted to fixed models with finite size.

The high reliability of formalized mathematics comes – due to the strictness that
is necessary – at the cost of an higher effort. However, previous work by Hölzl [12]
has shown that this approach is realistic in the sense that that stochastic processes
with discrete time and state space can be analyzed in Isabelle/HOL.

3
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1.5 Problem Statement

Unfortunately, Hölzl’s construction of probability spaces [10] is limited to stochastic
processes with discrete time and state space and does not generalize to the contin-
uous case. In this work, we formalize a method to construct probability spaces for
paths of arbitrary (i.e., discrete and continuous) stochastic processes. To be more
specific, we formalize the (in probability theory) well-known Daniell-Kolmogorov
theorem, which allows to construct probability spaces for arbitrary paths under the
assumption of a family of probability spaces for paths with finite domains.

1.6 Contributions

The proof of the Daniell-Kolmogorov theorem exploits the fact that paths with
finite domain can be equipped with a so-called polish topology. It then uses the fact
that measures on polish spaces are regular. Neither polish spaces nor regularity of
measures have been formalized in Isabelle/HOL yet. To the best of our knowledge,
this is the first formalization of a construction of probability spaces for paths of
arbitrary stochastic processes.
Our contributions are therefore the formalization of the following in Isabelle/HOL:

• polish spaces

• regularity of measures on polish spaces

• proof that functions with finite domain form a polish space

• the Daniell-Kolmogorov theorem, i.e., a generic construction of probability
spaces for paths of stochastic processes

1.7 Outline

We give an introduction to Isabelle/HOL and our notations in chapter 2 and describe
some general auxiliary developments in chapter 3.
We present our formalizations of polish spaces and regularity of measures in chap-

ter 4. We explicitly formalize paths with finite domain and show that they are polish
in chapter 5. Finally, the formalization of the Daniell-Kolmogorov theorem in Is-
abelle/HOL is described in chapter 6.
Chapter 7 outlines possible future developments, especially a means to construct

concrete instances of stochastic processes via so called kernels and sketches possible
applications of stochastic processes.
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1.7 Outline

If you are not familiar with Isabelle/HOL, in order to get an overview about
the formalization, you might want to jump directly from the introduction to Is-
abelle/HOL in chapter 2 to the formalization of the Daniell-Kolmogorov theorem
in chapter 6 and look up the technical details when you feel the need.
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2 Isabelle/HOL

Isabelle1 is an interactive theorem proving framework. The way a user guides a proof
in Isabelle is declarative and enforced by the (both human and machine readable)
proof language Isabelle/Isar [25]: The user gives intermediate steps and lets the
system fill in the missing details automatically. The intermediate steps can be
relatively large because Isabelle/HOL provides powerful automatic tools: It can
perform for example term rewriting, classical reasoning, use decision procedures for
linear arithmetic and can invoke external automatic provers for first order logic.
In order to guarantee trustworthiness, Isabelle follows the so-called LCF-approach:
Theorems are abstract types that can only be constructed by the inference rules of
the underlying logical system.

Isabelle can be instantiated with different kinds of object logics, however we only
work with the instantiation of Isabelle with higher-order logic which is called Is-
abelle/HOL. In this chapter, we describe the existing formalizations in Isabelle/HOL
that we use in our work and present our notational conventions.

We assume familiarity with logical notations, functional programming, and the
λ-calculus. We only give a very rough overview over Isabelle/HOL, the interested
reader shall consult for example the short overview about Isabelle/HOL by Nip-
kow [19] which is actually superseded by Nipkow’s manual “Programming and Prov-
ing in Isabelle/HOL”2 in the current distribution of Isabelle/HOL. A more compre-
hensive introduction is given by the “Isabelle/HOL Tutorial” [20], an updated version
of which is also available in the distribution3.

We can not give an extensive introduction into the different fields of mathematics
that we treat in our formalization. We basically list the required concepts that
are formalized in Isabelle/HOL. Please refer to the textbooks we chose to guide
the principal part of our formalizations in topology [24], measure theory [5] or
probability theory [4], since they provide suitable introductions to the respective
fields. Other recommendable textbooks about measure and probability theory are
from Ash [1] and Billingsley [6].

1http://isabelle.in.tum.de/
2http://isabelle.in.tum.de/dist/Isabelle2012/doc/prog-prove.pdf
3http://isabelle.in.tum.de/dist/Isabelle2012/doc/tutorial.pdf
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2 Isabelle/HOL

2.1 Source Code of the Formalization

This thesis describes our formalization which we carry out in the Isabelle/HOL
interactive theorem prover. You can browse and download the sources online4 or
find them on the CD. At some point in time, you might also find these developments
in the Archive of Formal Proofs5 or in the Isabelle distribution.
We give the name of corresponding definitions, lemmas or theorems in the source

code of our formalization together with the definitions, lemmas and theorems we
present in this document as in the following examples.

Definition 2.1. definition-in-source:

Lemma 2.2. lemma-in-source:

Theorem 2.3. theorem-in-source:

2.2 Simplified Notations

In this thesis, we simplify notation where it is actually more complicated due to
higher generality than necessary for our needs. Please refer to the source code if
you need more details. We make use of notation that looks more like ordinary
mathematics. But this is mostly just syntactic sugar in terms of infix or mixfix
syntax that could as well be added to Isabelle/HOL which looks otherwise more
like a functional programming language.
Apart from syntax, we try to stick close to the formalization in our descriptions,

in particular we try not to simplify away the restrictions that come with the type
system of Isabelle/HOL, which is more restrictive than ordinary set theory employed
by mathematics.

2.3 Basic Terms and Types

The formal language of Isabelle/HOL follows the λ-calculus, i.e., function applica-
tion is written f t instead of f(t). In order to stick closer to mathematical notation,
we notate function abstraction as (x 7→ t) instead of (λx. t). Isabelle/HOL is a
typed logic, the notation t :: τ means that the term t is of type τ . We also write
t1, . . . , tn :: τ to indicate that several terms are of type τ .
One basic type is B, which denotes boolean truth values. Type B is used for logical

formulas which are built from the usual operators for conjunction ∧, disjunction∨,
implication −→, and quantifiers ∃,∀. Equality is written =, the negation thereof 6=.

4http://home.in.tum.de/~immler/mastersthesis/
5http://afp.sf.net
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2.4 Specifications

Types are built from further base types like N for natural numbers, R for real
numbers, R for real numbers extended with infinity ∞, Rn for vectors of real num-
bers with dimension n. We notate type variables with Greek letters α, β, and so on.
The type of a function from α to β is written α→ β, the type of a set of elements
of type α is α set.
We write (a, b) for the pair of the terms a :: α and b :: β, we notate the type of

the pair with α× β. More general, we write (a1, . . . , an) :: α1 × · · · × αn for tuples.
A special term is undefined :: α, it denotes some fixed value of type α, which is

not further specified.

2.4 Specifications

In order to define a constant c in terms of a variable x, we write c x := . . . . In
order to specify an arbitrary element that satisfies the property P , we write Hilbert
choice as (ε x. P x), i.e., (∃x. P x) −→ P (ε x. P x) holds.

2.5 Sets

We already mentioned the type of sets, namely set. a ∈ A means that a :: α is an
element of A :: α set. We write the negation with a /∈ A. The set consisting of all
elements of a specific type is called the type universe and we write Univ :: α set for
the universe of type α. We build sets with set comprehension: {f x | P x} denotes
the set of all elements f x depending on elements x satisfying a given predicate P .
It is usually clear from the context, over which variables the predicate ranges.
We write union and intersection with ∪ and ∩, set difference for A,B :: α set as

A \B = {a | a ∈ A ∧ a /∈ B}. We write supA :: α and inf A :: α for the supremum
and infimum of a set A :: α set. We write P(A) :: α set for the power set of A, i.e.,
the set of all subsets of A.

2.6 Functions

For a function f , we write the preimage as f−1 y = {x | f x = y}. We write function
composition with ◦, i.e., (f ◦ g) x = f (g x). We write the image of a set under a
function with square brackets: f [A] = {f a | a ∈ A} for f :: α ⇒ β,A :: α set. We
also notate the image of a type very sloppy like f [α], when we actually mean the
image of a type universe f [Univ :: α].
HOL is a logic of total functions, functions f :: α⇒ β are always defined on the

whole type universe of α. One is, however, often interested in functions on only
a subset of the type universe. This can be modeled by taking into account only
functions that take the constant value undefined outside their domain. We write

9



2 Isabelle/HOL

f |I :: α ⇒ β for the restriction of a function f :: α ⇒ β to the domain I :: α set.
That means f |I i = f i if i ∈ I and f |I i = undefined otherwise. Note that the
composition of two restricted functions is not restricted in general. We therefore
write restricted composition as f ◦I g such that (f ◦I g) x = f (g x) if x ∈ I and
undefined otherwise.

2.7 Sequences and Subsequences

Sequences are often used in analysis. A sequence in Isabelle/HOL is just a function
y :: N⇒ α. To make clear that we actually work with elements of the sequence, we
write yi for the ith element y i and (yi)i∈N for the sequence as such. We call y′ a
subsequence of y, if there is a strictly monotonic function r such that y′i = y(r i). In
this case, we write y′ 4 y.

2.8 Type Classes

The formalization of topology is mostly based on the concept of type classes. A
type class is (like in the functional programming language Haskell) used to provide
a simple way of overloading. Type classes can also be seen like interfaces in object
oriented languages. Isabelle/HOL extends this concept to axiomatic type classes,
that means one can specify properties that the overloaded constant has to satisfy. An
example of a type class that we use is topological-space , here a type α must provide
a specification for the overloaded constant open :: α set⇒ B which characterizes the
open sets of a topology. If open satisfies the axioms of a topological space, i.e., if the
empty set and the type universe are open, and if the union and finite intersection of
open sets are open, then the type α is an instance of the type class topological-space
which we denote by α :: topological-space . We also use the name of the type class as
a predicate on types: topological-space (α) expresses that the type α is a topological
space.
A further example of a type class denotes countable types. We write α :: countable

for types α where the universe Univ :: α set is countable.

2.9 Topology

The formalization of topology in Isabelle/HOL is the foundation for the library for
multivariate analysis which was ported from Harrison’s Euclidean spaces for HOL-
Light [9]. In addition to the type class topological-space with its parameter open
for open sets in a topology, we use the type class metric-space for metric spaces, the
overloaded constant dist gives the metric of the space. The open ball around x with
radius e is denoted with ball e x = {y | dist x y < e}.

10



2.10 Multivariate Analysis

If one can show that the metric of a metric space is complete, i.e., every Cauchy
sequence (that is, a sequence of elements that get arbitrarily close according to the
metric) converges, then the type represents a complete metric space, encoded in the
type class complete-space. If a set X is complete, we write complete X. Closed sets
are formalized as sets with open complement, compact sets are formalized as sets
in which every sequence has a convergent subsequence. Predicates characterizing
closed and compact sets are closed and compact.

2.10 Multivariate Analysis

The library for multivariate analysis is based on topological results on Euclidean
spaces. Euclidean spaces are formalized in the type class euclidean-space as finite
dimensional inner product spaces. R and Rn are instances of this type class.

2.11 Probability Theory

Let us give a brief introduction into the basic concepts of probability theory. Modern
probability theory is centered around probability spaces. A probability space is a
tuple (Ω,A, P ) consisting of a sample space Ω, a collection of events A and a
probability distribution P which is defined on A. The sample space is the set
of elementary outcomes, an elementary outcome is the result of one run of the
random experiment. An event is a subset of the sample space, A contains all events
that can be assigned a consistent probability. Explicitly defining A is necessary,
since (especially for uncountable, e.g., real-valued sample space) not every subset
of the sample space can be assigned a consistent probability. Consistent means for
example, that the probability of a (countable) union of disjoint events is the sum of
the probabilities of the respective events.

2.11.1 Measure Space and σ-Algebra

Probability theory is based on measure theory, this also holds for the formalization
in Isabelle/HOL. Measure theory has been formalized by Hölzl and Heller [11], for a
detailed description of the current state of the formalization please refer to Hölzl [10].
Basic concepts of measure theory are formalized, a collection A :: α set set of sets

is a σ-algebra over Ω :: α set if A contains Ω and the empty set ∅ and if A is closed
under complement and countable union. A measure is a non-negative function from
sets of a σ-algebra into the extended reals R that assigns 0 to the empty set ∅ and
that is additive on the union of a countable collection of pairwise disjoint elements
of the σ-algebra. A function µ is additive, if µ(A ∪B) = µ A+ µ B.

11



2 Isabelle/HOL

A measure space in Isabelle/HOL is represented as a tuple consisting of a space
Ω :: α set, a σ-algebra A :: α set set over Ω, and a measure µ :: α set ⇒ R on A.
An important feature of the formalization is that measure spaces are collected in a
particular type. We write (Ω,A, µ) :: α measure-space for measure spaces on type
α. The fact that measure spaces form a type improves automation because every
tuple in the type is a measure space by definition, therefore no hypotheses need to
be discharged to apply results on measure spaces.
The type of measure spaces is also used to represent σ-algebras by taking as

measure the function that is constant 0. We then speak of a measurable space
(Ω,A). Isabelle/HOL provides the inductively defined σ operator, i.e., σ(A) ::
α measure-space is the smallest σ-algebra that contains the collection of sets A ::
α set set. In this case, we say that A generates σ(A), or that A is a generator.
Isabelle/HOL also provides the concept of Borel σ-algebras, i.e., the σ-algebra

generated by the collection of all open sets. Open sets are determined by the type,
we therefore write B :: α set set for the Borel σ-algebra of type α :: topological-space .
Probability spaces are measure spaces (Ω,A, µ) where the measure of the space

equals one: µ Ω = 1. Then we call Ω the sample space, elements of A are called
events and µ is called a probability measure.

2.11.2 Dynkin Systems

Dynkin systems can be used to inductively prove properties of σ-algebras – using
a slightly different induction principle than the one given by the σ operator. If the
generator is intersection-stable, Dynkin systems allow to weaken the inductive case
for countable union to the countable union of disjoint sets.

2.11.3 Extension of a Content to a Measure

A content is an additive, non-negative function that is defined on a ring of sets (a
ring is closed under intersection and union). A basic result from measure theory
(Caratheodory’s theorem) allows to extend this content to a measure on the σ-
algebra generated by the ring. One way to do this is to show that the content is
continuous at the empty set. That means, under the assumption of a decreasing
sequence (An)n∈N that converges to the empty set ∅, one needs to show that the
content converges to 0.
Isabelle/HOL provides a useful helper function extend-measure. If you have a

content µ on some generating set G over Ω, and if there exists an extension µ′ such
that (Ω, σ(G), µ′) is a measure space, then extend-measure Ω G µ is a measure space
that assigns to elements of the generator G the same value as the content µ.

12



2.11 Probability Theory

2.11.4 Measurability and Random Variables

Given a measure space (Ω,A, µ) :: α measure-space, a subset A ⊆ Ω is called
measurable if it is contained in the σ-algebra A. Given another measure space
(Ω′,A′, µ′) :: β measure-space, a function f :: α ⇒ β is called A-A′-measurable,
if preimages (restricted to Ω, which we omit in our notations) of the measurable
sets A′ under f are measurable with respect to A. The function A′ 7→ µ (f−1[A′])
is a measure on (Ω′,A′) and is called the push-forward measure, we also write
push f µ A′ = µ (f−1[A′])
Random variable are measurable functions from a probability space into a σ-

algebra.

2.11.5 Products of Measurable Spaces

Hölzl [10] formalized the construction of products of measure spaces, which requires
the notion of product sets and embeddings. Our formalization also uses these con-
cepts.

Product Sets

It is convenient (and also done in textbooks), to identify (indexed) products with
functions in a suitable way: Given an index or parameter set J :: α set and a
function A :: α ⇒ β set, the product (set) of A over J is the dependent function
space from J into A restricted to functions with the domain J . In products, for
j ∈ J , we also write Aj instead of A j.

Definition 2.4. PiE-def’:∏
i∈I

Ai := {f :: α⇒ β | (∀i ∈ I. f i ∈ Ai) ∧ f = f |I}

We call a product set (or product)
∏
i∈I Ai finite if the index set I is finite.

Accordingly for infinite, countable or uncountable products.

Embeddings

Embeddings establish a connection from products with smaller index set to products
with larger index set. For J, I :: ι set with J ⊆ I and component spaces given by Ωi

for all i ∈ I, we define the embedding of X ⊆ (
∏
j∈J Ωj) into (

∏
i∈I Ωi) as follows.

We omit Ω in the definition because it is usually clear from the context.

Definition 2.5. prod-emb-def’:

emb I J X :=

{
ω ∈ (

∏
i∈I

Ωi)

∣∣∣∣∣ ω|J ∈ X
}

13



2 Isabelle/HOL

σ-Algebra of Function Products

Literature defines the product
⊗

i∈I Ai of σ-algebras (Ωi,Ai) as the smallest σ-
algebra such that the projection for every index i ∈ I from

∏
i∈I Ωi into Ωi is

(
⊗

i∈I Ai)-A-measurable, i.e., the embedding (being the preimage of projection)
emb I {i} X needs to be contained in

⊗
i∈I Ai for every X ∈ A. Note that all finite

embeddings can be generated by singleton embeddings and vice versa. Therefore
the product

⊗
i∈I Ai is generated by embeddings G of finite products of measurable

sets, as it is done in Hölzl’s [10] formalization.

Definition 2.6. proj-algebra-eq’, sets-PiP’:

GI A :=
{
emb I J (

∏
j∈J

Aj)
∣∣∣ finite J ∧ ∅ 6= J ∧ J ⊆ I ∧ (∀j ∈ J. Aj ∈ Aj)

}
⊗
i∈I
Ai := σ

(
GI A

)
2.11.6 Probability Spaces for Discrete-Time Markov Chains

Hölzl uses the product of measure spaces as described before to formalize a proba-
bility space for paths of discrete-time Markov chains. Discrete-time Markov chains
are stochastic processes with discrete time and state space and the property that
probabilities for transitions depend only on the current time and state, not on the
history of states. For this section, we assume discrete time I (e.g., I = Univ :: N) and
finite state space S. The transitions of the Markov chain are given by a stochastic
matrix (πs,t)s,t∈S . That means, πs,t denotes the probability for the transition from
state s to state t. Therefore π defines a probability space (S,P(S), µs) for every
state s.
The measurable space for (infinite) paths is the product measurable space given by

(
∏
i∈I S,

⊗
i∈I P(S)). Literature usually defines this measurable space as generated

by cylinder sets, i.e., sets of infinite paths with a common prefix, which results in
the same measurable space. In order to obtain a probability space on paths, Hölzl
takes the product (

∏
(i,s)∈I×S S,

⊗
(i,s)∈I×S P(S), µP ) of the probability spaces for

states. A formalized theorem about infinite products guarantees the existence of
a probability measure µP on the product measurable space. Hölzl then casts this
probability space into a probability space on paths by giving a measurable function
path from the product of probability spaces to the measurable space of paths.
This construction can not be used to construct a probability space for arbitrary

stochastic processes: path is not measurable for arbitrary products (especially for
uncountable time or state space), therefore a different construction is necessary,
which we provide with the Daniell-Kolmogorov theorem.

14



3 Auxiliary Developments

Some parts of the formalization turned out to be of a quite general nature. We there-
fore formalized them in a way that can be reused in more generic settings. The first
is to show that a countable union of finite sets is countable. The second assumes a
sequence of properties on sequences and constructs a (diagonal) subsequence which,
at some point, satisfies an arbitrary property of the sequence.

3.1 Countable Union of Finite Sets

We show that a countable union of finite sets is countable by giving an injective
function from the elements of the union to the natural numbers. We assume a
sequence of sets (Jn)n∈N such that every Jn is finite. Being finite, every Jn can
be enumerated by some function enumn. We associate to an element j ∈

⋃
n Jn

the pair consisting of the least index n such that j ∈ Jn and the number m with
enumn m = j. This pair is then encoded as a natural number. We call the resulting
function (depending on a sequence J of finite sets) to-nat J and obtain that it is
injective:

Lemma 3.1. finite-set-sequence.inj-on-Un-to-nat: When Jn is finite for all
n ∈ N, then to-nat J is injective on

⋃
n Jn.

3.2 Diagonal Subsequences

In the course of our formalization it occurred twice to us, that starting from some
sequence y, we had to iteratively construct a subsequence y′ of y with some property,
then a subsequence y′′ of y′ with some additional property and so on, iteratively tak-
ing subsequences y(n+1) from the subsequence y(n). Taking the diagonal (y

(n)
n )n∈N

of this sequence of sequences, one gets a sequence that satisfies (apart from finitely
many indices) every property (see figure 3.1).
We formalized this in the following setting. Assume a sequence of properties

(Pn)n∈N and a sequence (yi)i∈N. Moreover assume that for every property Pn and
subsequence y′ of y, one can give a subsequence y′′ of y′ such that property Pn y′′

holds:

∀n. ∀y′ 4 y. ∃y′′ 4 y′. Pn y
′′

15



3 Auxiliary Developments
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Figure 3.1: Subsequences of y and (in circles) elements of the diagonal sequence

Exploiting this assumption, we (recursively) define subsequences (y
(n+1)
i )i∈N of

(y
(n)
i )i∈N and obtain a sequence of sequences (y(n))n∈N such that for y(n) the property

Pn holds. We use Isabelle/HOL’s mechanism to define constants from primitive
recursive specifications.

Definition 3.2. subseqs.seqseq.simps:

y(0) :=y

y(n+1) :=(εy′′. y′′ 4 y(n) ∧ Pn y′′)

If we take the assumption mentioned before into account, we can show that indeed,
property Pn holds for y(n+1).

Lemma 3.3. subseqs.seqseq-ex:

Pn y
(n+1)

Our aim is to obtain a subsequence for which at some point, an arbitrary property
holds. We therefore define the diagonal subsequence z as follows: Take as ith element
the ith element of the ith subsequence y(i), as illustrated in figure 3.1.

Definition 3.4. subseqs.diagseq:

zi := y
(i)
i
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3.2 Diagonal Subsequences

We can prove that (zi)i∈N is a subsequence of y and for every n, apart from finitely
many (actually n) indices in the beginning, z is a subsequence of y(n).

Lemma 3.5. subseqs.subseq-diagseq:

z 4 y

Lemma 3.6. subseqs.diagseq-seqseq:

(zi+n)i∈N 4 (y
(n)
i )i∈N

Now if the properties Pn are stable under the building of subsequences – i.e., if
Pn holds for y(n) then it also holds for every subsequence of y(n) – and invariant
for the prepending of finite sequences, the diagonal subsequence z satisfies arbitrary
properties Pn if we take lemma 3.3 into account.
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4 Topology

An important step in the proof of the Daniell-Kolmogorov theorem is the approxima-
tion of measures with measures of compact sets. This reasoning relies on regularity
of measures, a notion that is based on results from topology. Measures are regular
on polish spaces, which must have an enumerable topological basis. For the proof of
regularity, we need an alternative characterization of compact sets and introduce a
notion of distance between points and sets. These concepts were not yet formalized
in Isabelle/HOL, so we describe our formalizations in the following.

4.1 Characterization of Compact Sets with Total
Boundedness

We provide an alternative characterization of compact sets which is fairly standard
in mathematics, but not yet formalized in Isabelle/HOL. The library already con-
tains the implication that a compact set is totally bounded. This means that for
every compact set C and every e > 0, there is a finite set of neighborhoods ball e
which covers C.
We show the reverse implication: We assume that for every e > 0 there is a

finite covering of C and show that the set is compact. We show this by going
back to the definition, i.e., showing that every sequence in C has a convergent
subsequence. We construct such a convergent subsequence as follows: For every
e = 1

n , we find some k and a subsequence in ball e k that contains infinitely many
elements of the original sequence. From this property, we can build a diagonal
sequence as introduced in section 3.2: The nth element of the diagonal sequence lies
in a neighborhood ball 1

n kn (which is contained in ball 1
n−1 kn−1). Consequently,

the diagonal sequence is a Cauchy sequence in C. If we assume that C is complete,
the diagonal sequence converges.
Having both implications (together with the fact that compact sets are complete),

we obtain that compact sets are characterized as complete and totally bounded.

Lemma 4.1. compact-eq-totally-bounded:

compact C ←→ complete C ∧

(
∀e > 0. ∃K. finite K ∧ C ⊆

⋃
k∈K

ball e k

)
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4 Topology

4.2 Characterization of Closed Sets with Infimum
Distance

We needed to provide a notion of distance between a point and a set on a metric
space α :: metric-space (where we assume a distance dist). This helps to characterize
the elements of closed sets. The standard way to define this distance is to take the
infimum of the possible distances:

Definition 4.2. infdist-def:

infdist x A := inf {dist x a | a ∈ A}

Note that infdist is underspecified for the case A = ∅. We can show some sort of
triangle inequality for the distance to a nonempty set:

Lemma 4.3. infdist-triangle: Assume A 6= ∅ Then:

infdist x A ≤ dist x y + infdist y A

The characterization mentioned before is that an element is contained in a closed
set, if and only if the distance to this set is zero:

Lemma 4.4. in-closure-iff-infdist-zero: Assume A 6= ∅ and closed A Then:

(x ∈ A←→ infdist x A = 0)

4.3 Topological Basis

From now on we assume a topological space. Spoken in Isabelle/HOL, we fix a type
α :: topological-space and assume a predicate open :: α set⇒ B on sets that specifies
whether the set is open in the topology given by α or not.
A set of open sets T :: α set set is called topological basis iff every open set is the

union of some sets in T .

Definition 4.5. topological-basis-def:

topological-basis T :=

(
∀T ∈ T . open T

)
∧(

∀X. open X −→ ∃T ′ ⊆ T . X =
⋃

T ′∈T ′

T ′
)

An alternative, often more convenient characterization is given by the following
lemma which allows to do the proofs in a more streamlined way: Fix x and X,
assume x ∈ X and open X, then find an element T of the basis which contains x
and is a subset of X.
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4.4 Enumerable Basis

Lemma 4.6. topological-basis-iff: T with (∀T ∈ T . open T ) is a topological
basis iff:

∀X. open X −→ (∀x ∈ X. ∃T ∈ T . x ∈ T ∧ T ⊆ X)

4.4 Enumerable Basis

One can obtain interesting results about topological spaces if one restricts its basis to
a countable set. As a concrete example, think of the real numbers: The set of open
intervals with rational coordinates is a countable basis. A type α :: topological-space
is an instance of the class enumerable-basis if there exists a function f :: N⇒ α set
that enumerates a topological basis.

Definition 4.7. ex-enum-basis:

enumerable-basis(α) := topological-space (α) ∧ (∃f. topological-basis (f [N]))

For the rest of this chapter we are going to assume a type α :: enumerable-basis.
In order to have something to work with, we define enum-basis as one possible
enumeration of one possible basis enum-basis:

Definition 4.8. enum-basis’-def:

enum-basis := (εf. topological-basis (f [N]))

From this arbitrary enumeration, we enumerate an alternative basis which is
closed under (finite) union. This closure property comes in handy in some proofs.
We assume a function from-nat :: N ⇒ N set, which enumerates all finite sets of
type N.

Definition 4.9. enum-basis-def:

˜enum-basis n :=
⋃

m∈from-nat n

enum-basis m

The definition allows to prove that ˜enum-basis actually also enumerates a topo-
logical basis and that this basis is closed under (finite) union.

Lemma 4.10. enumerable-basis:

topological-basis ( ˜enum-basis[N])

Lemma 4.11. union-basisI:

˜enum-basis m ∪ ˜enum-basis n ∈ ˜enum-basis[N]
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4 Topology

Closure under union allows us to prove that every open set is the union of an
increasing sequence of elements of the basis – consider the (enumerable) elements
of the basis which make up the open set and incrementally take the union of these
elements to obtain an increasing sequence. So for every open set X, there exists an
increasing sequence (Sn)n∈N that unions up to X.

Lemma 4.12. open-imp-Union-of-incseq:

∀X :: α set. ∃S :: N⇒ α set. open X −→

(
X =

⋃
n∈N

Sn ∧ (∀n. Sn ⊆ Sn+1)

)
In a topological space with enumerable basis, we can represent open sets as a

countable union of elements of the basis, we therefore have that the enumeration of
the basis is a generator of the Borel sets B :: α set set.

Lemma 4.13. borel-eq-sigma-enum-basis:

B :: α set set = σ (enum-basis[N])

Another interesting property that follows rather immediately for spaces with an
enumerable basis is the fact that they possess a countable dense set. A set lies dense
in a topological space, if every (nonempty) open set contains (at least) one element
of the dense set. Recall the example from above: The rationals lie dense in the
reals. The existence of a countable dense set D[N] can be stated as follows.

Lemma 4.14. countable-dense-set:

∃D :: N⇒ α. ∀A. (open A ∧A 6= ∅) −→ (∃n. D n ∈ A)

4.5 Polish Space

Standard textbooks (like the one of von Querenburg [24]) define polish spaces as
completely metrizable topological spaces with an enumerable basis. The notion of
completeness is tied to a metric: A space is complete with respect to some metric.
In Isabelle/HOL, the metric is fixed for a given type – the metric dist is a

parameter of the type class metric-space. That means, once we choose a type
α :: metric-space, we are given the metric dist and can either prove that the type
α is an instance of complete-space or not. From a mathematical (or set theoretic)
point of view, if the fixed metric does not render the space complete, there may be
a different metric in which case one would speak of a completely metrizable space.
If one encountered such a case in Isabelle/HOL, one would need to define a copy of
the type with the complete metric associated to it.
As a consequence, we define polish spaces as the type class of complete metric

spaces with an enumerable basis:
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4.6 Regularity of Measures

Definition 4.15. polish-space-class-def:

polish-space(α) := complete-space(α) ∧ enumerable-basis(α)

To support that our formalizations are sensible and that we can actually profit
from them, we show that Euclidean spaces are polish: In fact, Euclidean spaces over
R are complete and cubes with rational coordinates form a countable basis.

Lemma 4.16. classrel-ordered-euclidean-space-polish-space:

(α :: euclidean-space) −→ (α :: polish-space)

Another easy task is to show that the natural numbers are polish: We equip
the natural numbers with the discrete topology, i.e., every subset is an open set,
and define the discrete metric, i.e., a metric that assigns 1 to distinct points. The
resulting space is complete and the enumeration of the singleton sets forms a basis.
It follows:

Lemma 4.17. arity-polish-space-nat:

(N :: polish-space)

4.6 Regularity of Measures

The main reason why we introduce polish spaces is the fact that one can show
regularity for measures on polish spaces. Regularity means that the measure of
an arbitrary Borel set can be approximated by open or compact sets. The proof
requires the characterization of compact sets by total boundedness (lemma 4.1),
the existence of a countable dense set (lemma 4.14), and the notion infdist for the
distance between a point and a set which characterizes closed sets (lemma 4.3).
With these means, we construct a Dynkin system (see section 2.11.2) for which the
approximation property holds and conclude that the Dynkin system generates the
Borel sets.

Theorem 4.18. inner-regular, outer-regular:
Assume a finite measure µ on the Borel σ-algebra B of type α and some B ∈ B.
Then the following holds:

• Inner regularity:

µ B = sup {µ K | K ⊆ B ∧ compact K}

• Outer regularity:

µ B = inf {µ U | U ⊇ B ∧ open U}

23



4 Topology

Apart from the missing topological fundamentals we described in this chapter,
the formalization of this theorem (the textbook proof of Bauer [5] takes roughly
three pages) went very smoothly and without technical difficulties. One possible
explanation is the fact that Bauer bases his arguments (except the topological ones)
on concepts he introduced earlier in his book – the very same book that served as
the inspiration of the formalization of measure theory in Isabelle/HOL.
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5 Finite Map

We introduced polish spaces as a type class, which is why we now introduce a new
type in order to profit from our developments. The basic point where we need a pol-
ish space in the proof of the Daniell-Kolmogorov theorem is where we approximate
a measure on functions with finite domain. We collect all these functions in the type
of finite maps (we call it map because the type we define explicitly carries a domain)
and show that this type is polish. Since (for the Daniell-Kolmogorov theorem) we
actually want to obtain a measure on functions, we need to provide a means to
transfer results between these types: We are mostly interested in measures of sets
of the respective types, therefore we provide measurable functions that convert be-
tween functions and finite maps in order to establish an isomorphism between the
respective measure spaces.

5.1 Type Definition and Basic Properties

One way to represent functions with a finite domain in Isabelle/HOL is to explicitly
give a domain I :: ι set and a function f :: ι ⇒ α that takes the constant value
undefined outside this domain. Consult the discussion that follows in section 5.7 for
considerations of other representations. We notate the type constructor for finite
maps with domain in ι and codomain in α as ι⇒F α.

Definition 5.1. type-definition-finmap:

(ι⇒F α) := {(I :: ι set, f :: ι⇒ α) | finite I ∧ f = f |I}

We provide the constructor finmap to define a finite map. Moreover we define
dom to get the domain of the finite map and the operator (·)F to perform function
application. To imitate the behavior of the representing elements of the base type,
the application of elements outside the domain of the finite map yields undefined.

Lemma 5.2. domain-finmap-of, proj-finmap-of: Assume finite I, then:

dom (finmap I f) = I

(finmap I f)F = f |I
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5 Finite Map

Given two finite maps with the same domain, equality is therefore characterized
component-wise.

Lemma 5.3. finmap-eq-iff:

f = g ←→ (dom f = dom g ∧ (∀i ∈ dom f. (f)F i = (g)F i))

5.2 Metric Space

One of our goals is to show that the type ⇒F is polish. For this, we first need to
provide a topology on ⇒F which we do by defining a metric on ⇒F . We therefore
assume a type ι and α :: metric-space. We denote by distα the metric given by
the type α. For finite maps with the same domain, one possible choice is the
Manhattan-metric, summing over the distances for each coordinate. Since our type
⇒F contains finite maps of all possible domains, we compare the finite maps as if
they had a larger domain and associate to each index outside the domain the value
undefined. To make sure that we actually have a metric, i.e., that we assign the
distance 0 only to finite maps that are equal, we include the difference between the
domains.

Definition 5.4. dist-finmap-def: (Metric on ⇒F )

dist f g :=
∑

i∈dom f∪dom g

distα ((f)F i) ((g)F i) +

|(dom f \ dom g) ∪ (dom g \ dom f)|

We establish that ⇒F associated with this metric forms a metric space. In this
topological space, we have that the projection to a single index is continuous.

Lemma 5.5. arity-metric-space-finmap:

(ι⇒F α) :: metric-space

Lemma 5.6. continuous-proj: The projection (x 7→ (x)F i) is a continuous
mapping.

5.3 Product Set

Similar to definition 2.4 of the product set of functions, we define a product set of
finite maps: For I :: ι and A :: ι ⇒ α set, we define

∏F
i∈I Ai :: (ι ⇒F α) set as

the set of all finite maps that range at index i in the set given by Ai. Note that
(compared to

∏
) A is still just a regular function and that the restriction to the

domain can now be declared explicitly. Moreover, when using (·)F to interpret the
elements as functions, they are restricted to I, just like for the product of functions.
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5.4 Polish Finite Map

Definition 5.7. Pi’-def:∏F

i∈I
Ai = {f | dom f = I ∧ (∀i ∈ I. (f)F i ∈ Ai)}

The connection between products of finite maps and products of functions is given
by the following lemma: Projecting all finite maps of a product yields the according
product on functions.

Lemma 5.8. Pi-Pi’: ∏
i∈I

Ai =

{
(f)F

∣∣∣∣∣ f ∈ ∏F

i∈I
Ai

}
Consider ι ⇒F α, with α :: metric-space. The metric induces a useful topology

and the notion of product is appropriate: A product of open sets in α is an open
set of finite maps:

Lemma 5.9. open-Pi’I:(
∀i ∈ I. openα (Ai)

)
−→ open

(∏F

i∈I
Ai

)

5.4 Polish Finite Map

We introduced finite maps in order to use regularity of measures, for this we need to
show that finite maps are polish. We are going to show (ι⇒F α) :: polish-space for
ι :: countable and α :: polish-space. To this end, we are going to show that ι ⇒F α
is complete and possesses an enumerable basis.

5.4.1 Completeness

We show the completeness of finite maps ι ⇒F α with α :: complete-space in a
standard way: Every Cauchy sequence converges. We establish that every Cauchy
sequence of finite maps (fn)n∈N stabilizes at a certain domain: Since the elements
of f get arbitrarily close, there exists an N with ∀n ≥ N. dist (fn) (fN ) < 1 from
which we can conclude that all elements after fN have the same domain:

∀n ≥ N. dom fn = dom fN

The remainder of the argument is fairly standard: For every component i, the
sequence ((fn)F i)n∈N converges to some gi because (fn)F i is of type α, which is
complete. Since equality is defined component-wise (lemma 5.3), we can conclude
that the sequence (fn)n∈N converges to the finite map given by finmap (dom fN ) (i 7→
gi). We therefore have:
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5 Finite Map

Lemma 5.10. arity-complete-space-finmap:

complete-space(α) −→ complete-space(ι⇒F α)

5.4.2 Enumerable Basis

As a first step, we show that finite maps with a countable domain and countable
codomain are countable, too: We can represent a finite map f with dom f =
{i1, . . . , in} as a list of pairs of elements of the domain together with its associated
value ((i1, (f)F i1), . . . , (in, (f)F in)). The pairs are countable since the components
range over countable domains, moreover lists of countable elements are countable.

Lemma 5.11. arity-countable-finmap:

(countable(ι) ∧ countable(α)) −→ countable(ι⇒F α)

If we assume α :: enumerable-basis, we may assume an enumeration enum-basisα
of a topological basis of α. From this we construct an enumeration of a topological
basis for (ι :: countable)⇒F α:
We can enumerate all finite maps of type ι⇒F N in a sequence (fn)n∈N according

to lemma 5.11. If we map the codomain of fn into elements of the basis of α, we
basically enumerate all functions into all combinations of elements of the basis. We
take the product set thereof and declare this as a candidate for the enumeration of
a basis of ι⇒F α:

Definition 5.12. enum-basis-finmap-def:

enum-basis n :=
∏F

i∈dom fn

enum-basisα ((fn)F i), enum-basis :: N⇒ (ι⇒F α) set

By definition, the range of enum-basis is the set of all products of all elements of
a basis of α:

Lemma 5.13. range-enum-basis-eq:

enum-basis[N] =

∏F

j∈J
Aj

∣∣∣∣∣∣ finite J ∧ (∀j ∈ J. Aj ∈ enum-basisα[N])


In order to show that we actually enumerate a basis, we exploit the charac-

terization of a topological basis given by lemma 4.6. We have that for arbitrary
x :: ι ⇒F α in an open set A, there is an open ball ball x e around x that is a
subset of A. By the choice of our metric on finite maps, we have that a product of
open balls

∏F
i∈dom x ballα ((x)F i) e′ with e′ = e

|dom x| is contained in ball x e. A
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5.5 σ-Algebra of Products of Finite Maps

use of lemma 4.6 for type α gives us elements Bi of the basis of α that are subsets
of ballα ((x)F i) e′. Consequently, the product

∏F
i∈dom xBi is an open set with the

desired properties, i.e., it is a subset of A and in the range of enum-basis. We can
conclude that enum-basis enumerates a topological basis of type ι⇒F α.

(countable(ι) ∧ enumerable-basis(α)) −→ enumerable-basis(ι⇒F α)

Together with the results about completeness of finite maps and the definition of
polish spaces, we can show that ι ⇒F α is polish. As a consequence, we can now
approximate measures on ι⇒F α according to regularity from theorem 4.18.

Theorem 5.14. arity-polish-space-finmap:

(countable(ι) ∧ polish-space(α)) −→ polish-space(ι⇒F α)

5.5 σ-Algebra of Products of Finite Maps

We introduced the type ⇒F of finite maps and showed in the previous section that
it is polish basically for one reason: We want to profit from theorem 4.18 which
allows us to approximate Borel measures of polish measure spaces. Consequently,
we provide a σ-algebra for finite maps similar to the one for function products. Then
we show that this σ-algebra actually is the Borel σ-algebra of finite maps.
Similar to (function) product sets

∏
(definition 2.4), we introduced product sets∏F also for finite maps (definition 5.7). Nevertheless, we define the product σ-

algebra slightly different: The product
⊗

j∈J Aj contains only functions with the
same domain J . For the finite maps, we allow several domains. The product σ-
algebra of finite maps does therefore depend not only on a set J :: ι set but on a
collection of sets J :: ι set set that contains the allowed domains.
For measurable spaces (Ωj :: α set,Aj :: α set set) for j ∈

⋃
J∈J J , we define the

product measurable space (ΩJ ,
⊗F

j∈J∈J Aj) as follows:

Definition 5.15. PiF-def:

ΩJ :=
⋃
J∈J

∏F

j∈J
Ωj

⊗F

j∈J∈J
Aj :=σ

∏F

j∈J
Xj

∣∣∣∣∣∣ J ∈ J ∧X ∈
∏
j∈J
Aj




Note that in the notation j ∈ J ∈ J , J is something like an auxiliary binder for
the product syntax. What we actually mean is j ∈

⋃
J∈J J . If J is a singleton {J},

we just write
⊗F

j∈J Aj .
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5 Finite Map

Having the ability to talk about a collection of domains J in J provides us with
a good amount of flexibility: To measure functions from

∏
j∈J Aj , we can choose

the singleton J = {J}. When we talk about Borel sets (which are defined on the
whole type universe), we can choose J = {J | finite J} and actually include every
possible finite map.
For countable domain, we have the following helpful lemma to reduce measurabil-

ity on a set of domains to measurability for just one (arbitrary, but fixed) domain.

Lemma 5.16. finite-measurable-singletonI:
For J :: (ι :: countable) set set and C :: β measure-space
Assume:

∀J ∈ J . finite J −→ f is

 ⊗F

j∈J
Aj

 -C-measurable

Then:

f is

 ⊗F

j∈J∈J
Aj

 -C-measurable

We can show by adapting a similar proof for functions that the product σ-algebra⊗F
j∈J Aj of finite maps is generated by the product of the respective generators

Gj with σ(Gj) = Aj . For this, we need to assume that there exists an increasing
sequence of elements that covers the whole space. But here we can use lemma 4.12
since the whole space is an open set.
Regularity of measures is declared for Borel σ-algebras of a polish type. In fact,

we can use the σ-algebra given by
⊗F : If we include all (finite) domains, we can

show that we have exactly the Borel σ-algebra of finite maps:

Theorem 5.17. borel-eq-PiF-borel: Assume J = {J | finite J}.

B :: (ι⇒F α) set set =

 ⊗F

j∈J∈J
(B :: α set set)


5.6 Measure Space Isomorphisms Involving Products of

Finite Maps

The Daniell-Kolmogorov theorem specifies the existence of a measure on functions
with arbitrary domain. We need to use⇒F in the proof because then we can exploit
regularity of measures on polish spaces. But we can (by definition) represent only
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5.6 Measure Space Isomorphisms Involving Products of Finite Maps

functions with finite domain with the type ⇒F , therefore the Daniell-Kolmogorov
theorem needs to be stated in terms of arbitrary functions.
As a consequence, we need to somehow transfer our results between these types.

What we are mostly interested in is measures of sets of the respective types. There-
fore we provide an isomorphism between measure spaces on the σ-algebra generated
by (function) product sets and the σ-algebra of (finite map) products.
A (point) isomorphism (see Rösler [23], Bogachev [7]) between measure spaces

(Ω,A, µ) and (Ω′,A′, µ′) is a bijective function from Ω to Ω′ that is measure pre-
serving. Measure preserving means that the push-forward measure of µ equals µ′;
for a bijective function f :

∀A′ ∈ A′. µ′ A′ = µ (f−1[A′]) = push f µ A′

In this section, we provide two isomorphisms: First, we establish an isomorphism
between a measure space (

∏
j∈J Ωj ,

⊗
j∈J Aj , µ) on functions and a measure space

(
∏F
j∈J Aj ,

⊗F
j∈J Aj , µF ) on finite maps. Second, we show that the composition with

a bijective function is an isomorphism. We will use both to establish an isomorphism
between products of functions with a countable index set and products of finite maps
with the natural numbers as index set. Note that we did not explicitly formalize
the notion of isomorphisms in Isabelle/HOL, we only provide measure preserving
bijections.

5.6.1 Functions and Finite Maps

The operator (·)F and the constructor finmap provide means to transfer between
functions and finite maps while preserving their “structure”, i.e., function application
and application (·)F of finite maps yield the same results. We can show that the
constructor finmap J is measurable.

Lemma 5.18. measurable-PiM-finmap-of:

finmap J is (
⊗
j∈J
Aj)-(

⊗F

j∈J
Aj)-measurable

For the inverse direction, we first show that the projection x 7→ (x)F j of fi-
nite maps to a given single index j is (

⊗F
j∈J Aj)-Aj-measurable. This serves as a

foundation to show that (·)F is a measurable function from finite maps to functions.

Lemma 5.19. measurable-PiM-proj:

(·)F is (
⊗F

j∈J
Aj)-(

⊗
j∈J
Aj)-measurable
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5 Finite Map

We also have that for finite J , (·)F and finmap J provide a bijection between∏
j∈J Aj and

∏F
j∈J Aj . For a given measure µ on function products, we have that

the push-forward measure of µ under finmap J is a measure of an isomorphic measure
space on finite maps (finmap J is a measure preserving bijection):

Lemma 5.20. (∏
j∈J
Aj ,

⊗
j∈J
Aj , µ

)
:: (ι⇒ α) measure-space

is isomorphic to(∏F

j∈J
Aj ,

⊗F

j∈J
Aj , push (finmap J) µ

)
:: (ι⇒F α) measure-space

5.6.2 Transferring the Domain of a Function

We encounter the issue that the domains of the functions we want to reason about
range over a countable subset of an arbitrary type. To profit from the results about
finite maps, we need the whole type universe to be countable. We therefore provide
an isomorphism between measure spaces on products of functions where we transfer
the domain of the functions.
For this, we assume an injective function f :: ι ⇒ κ on an index set J which is

consequently a bijection between J and f [J ]. The domain of a function is transferred
by composing the function with f . If we take the restricted composition, i.e., the
composition restricted to J , we have a measurable function to transfer the domain
of function products:

Lemma 5.21. measurable-compose:

(m 7→ m ◦J f) is (
⊗
k∈f [J ]

Ak)-(
⊗
j∈J
Aj)-measurable

In addition, the restricted composition with the inverse f−1 is also measurable.
We consequently have an isomorphism between a measure space of products and a
measure space for the transferred domain.

Lemma 5.22. Assume an injective function f :: ι⇒ κ on J . Then:(∏
j∈J
Aj ,

⊗
j∈J
Aj , µ

)
:: (ι⇒ α) measure-space

is isomorphic to
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( ∏
k∈f [J ]

Ak,
⊗
k∈f [J ]

Ak, push (m 7→ m ◦J f) µ

)
:: (κ⇒ α) measure-space

5.7 Discussion

We built the type of finite maps as tuples of a domain and a function restricted
to that domain. If you were to solely design a library of finite maps, you would
probably start with the type map of Isabelle/HOL and restrict the elements of this
type to finite domains. You could then profit from the developments about maps in
general. We chose our formalization, because of the similar representation that is
also used for products

∏
of functions. The results that we were interested in were

mostly formalized for functions, not for maps. So basically, we were interested in
functions, but we needed to add the restriction of the domain to the type to be able
to obtain the topological properties of functions with finite domain.
Concerning the measure spaces on finite maps, the product construction explicitly

carries the domain, so in this case there would have been no need to add the domain
to the type. For the topological results, is seems like it is not really necessary that
the domain is included in the type, so perhaps an extension of finite functions
(formalized by Lochbihler [18]), i.e., functions with a finite domain, would have
sufficed and would have been probably more appropriate and one would have saved
some duplicate efforts.
However, we did not follow these considerations too much: The main reason

why we had to introduce this new type is that almost all topological properties are
formalized in terms of type classes, i.e., all assumptions have to hold on the whole
type universe. It feels like a cleaner approach to relax all necessary topological
definitions and results from types to sets because other applications might profit
from that, too. This is a task we might tackle in the future.
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6 Projective Limit

Our goal for this chapter is to provide a probability space to measure paths, i.e.,
functions from time into some state space. For the rest of the chapter we will write I
to denote the time, i.e., the domain of the paths. We assume for the state space the
Borel σ-algebra of a type α, namely B :: α set set. The measurable space on paths
will then be the product measurable space

⊗
i∈I B as introduced in definition 2.6.

Let us emphasize, that (for the rest of this chapter) we do not make any as-
sumptions on the domain I :: ι or the type ι. However, we need to assume that
the state space is polish (see section 4.5), this means for the rest of the chapter
α :: polish-space.
The Daniell-Kolmogorov theorem which we approach in this chapter constructs

a probability measure on the arbitrary product space depending on measures on
finite-dimensional product spaces. For convenience, we abbreviate the measurable
spaces with (ΩJ ,BJ) where J gives the domain of the functions or the dimension
of the product space. In the following we are only interested in the product spaces
with finite J ⊆ I, the only exception is the whole product space (ΩI ,BI).

Definition 6.1. PiP-def: The measurable product space (ΩJ ,BJ) for domain J

ΩJ :=
∏
j∈J

Univ

BJ :=
⊗
j∈J
B

6.1 Projective Family

The Daniell-Kolmogorov theorem constructs a distribution PI on the product space
(ΩI ,BI) in terms of a family of finite dimensional distributions PJ on product spaces
ΩJ , i.e., J ⊆ I with J finite.
Let us give a short intuition to this: Assume PI is given. Then for a finite J ,

PJ shall be the probability distribution of paths projected to the finite domain J .
PJ(
∏
j∈J Bj) is to be interpreted as the probability for a random path with domain

J to pass at every index j ∈ J through the set Bj (see for example figure 6.1).
To relate the different product spaces to each other, the product over J is em-

bedded into the product space over I with emb I J (definition 2.5). A necessary
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I

“B ”

Bj1

Bj2

Bj3

Figure 6.1: One possible path through Bj for j ∈ {j1, j2, j3}

condition for the interpretation of PJ as the probability of the projection to be
correct is PJ(

∏
j∈J Bj) = PI(emb I J (

∏
j∈J Bj)).

The Daniell-Kolmogorov theorem now takes the opposite direction: It assumes a
family PJ of finite-dimensional distributions and constructs a probability measure
PI on the product space (ΩI ,BI) that is consistent with the finite-dimensional dis-
tributions. Consistent means in this case that if we embed a product set B (over
J) into a space with a larger index set H, then the measures should be the same in
both product spaces. Consistency of the finite-dimensional family of distributions
is captured in the notion of a projective family :

Definition 6.2. projective-family-def: P :: ι set ⇒ (ι ⇒ α) measure-space is
called a projective family over BI , iff the following holds:

• PJ is a probability measure on (ΩJ ,BJ) (∀J ⊆ I. finite J)

• ∀H J B. (J ⊆ H ∧ finite H ∧H ⊆ I) −→ PH (emb H J B) = PJ B

6.2 Generator and Content

The Daniell-Kolmogorov theorem states that the probability distribution on BI is
completely determined by a consistent (i.e., projective) family of finite-dimensional
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6.2 Generator and Content

distributions on BJ . We therefore assume from now on a projective family P ::
ι set⇒ (ι⇒ α) measure-space.
In order to construct the probability distribution PI for the measurable space

(ΩI ,BI), we define a generator Z of BI and a content, i.e., an additive and non-
negative function P0 on Z, and extend this content to a (probability) measure PI
on the σ-closure of Z, i.e., on BI .
The generator is the union of all σ-algebras of finite embeddings:

Definition 6.3. product-prob-space.generator-def:

Z :=

 ⋃
J 6=∅∧finite J∧J⊆I

(emb I J)[BJ ]


Lemma 6.4. sets-PiM-generator:

σ(Z) = BI

P0 needs to be defined on sets Z ∈ Z, i.e., embeddings of the form Z = emb I J B
with B ∈ BJ . We want to associate to an embedding of a product over J its
probability given by the finite-dimensional distribution.

P0 (emb I J B) = PJ B

However, for a given Z ∈ Z, there may be several representations, i.e., Z =
emb I J B = emb I K C. Since P is projective, one can show PJ B = PK C for
finite J,K ⊆ I (in the same way as it was done by Hölzl [10]). This means that P0

is well-defined and can be defined using Hilbert choice.

Definition 6.5. µG’-def:

P0 Z := (εx. ∀J ⊆ I. finite J −→ (∀B ∈ BI . Z = emb I J B −→ x = PJ B))

P0 is specified for every element of Z. These elements are finite embeddings in I.
We therefore have the desired projectivity of P0 on Z.

Lemma 6.6. generatorE’: Assuming Z ∈ Z, there exists a finite J ⊆ I and
B ∈ BJ such that

• Z = emb I J B

• P0 Z = PJ B

It is easy to see that P0 is non-negative and additive, hence a content on the
generator Z.
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6 Projective Limit

Lemma 6.7. positive-µG’: P0 is non-negative on Z.

Lemma 6.8. additive-µG’: P0 is additive on Z.

One observation that is actually not surprising is the considerable amount of
redundancy with respect to the formalization of products of probability spaces by
Hölzl [10]. We profited from the developments about products and basically copied
proofs about the pre-measure operating on the generator of the product σ-algebra.
This is because the proof for products of measure spaces is based on a particular
projective family, without introducing the notion of projectivity and thus working
only in this particular setting. It would be worth generalizing the two developments.

6.3 Extension of Content to Measure

In the previous section, we showed that P0 is a content on Z. Moreover Hölzl [10]
already formalized that Z is a ring of sets. The standard way in measure theory to
prove the existence of a (probability) measure PI that extends P0 on the σ-closure
of Z is described in section 2.11.3: One needs to show that P0 is continuous at the
empty set ∅. That is, one assumes a decreasing sequence (Zn)n∈N with Zn ∈ Z that
converges to ∅ and shows that the content P0 Zn converges to 0. We are going to
show the contrapositive proposition: We assume that P0 Zn converges to a > 0 and
construct an element z ∈

⋂
n Zn, i.e., we show that Zn does not converge to ∅. Note

that since the sequence is decreasing, we may assume P0 Zn ≥ a for all n.
The structure of the proof can be split into two parts: First, a sequence of func-

tions yn :: ι ⇒ α is constructed in a way such that infinitely many elements of the
sequence lie in compact subsets of Zn. We show the existence of these elements by
proving that these compact subsets have a (probability) measure greater than zero.
Second, for every index t ∈ I, compactness guarantees that there exists a subse-
quence (y′n)n∈N of (yn)n∈N that converges for this index t, i.e., (yn t)n∈N converges.
One then constructs a diagonal sequence that converges for every index (note that
for every n, yn stems from an embedding of a finite product such that there is only
a countable number of indices t involved).
We can define the extension of the content P0 to a measure PI on (ΩI ,BI) if we

take lemma 6.4 into account:

Definition 6.9. PiP-def:

PI := extend-measure Z P0

6.3.1 Probabilistic Argument

In the following, you will find a description of how the proof is done in a more
detailed fashion, concentrating on the technical difficulties of the formalization.
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From Embeddings to Finite Products

For every n the element Zn of the decreasing sequence Zn ∈ Z is an embedding of
some finite product Bn ∈ BJn for some domain Jn.

Zn = emb I Jn Bn

Note that one can assume (by embedding into the union of the index sets) that
the sequence Jn of the index sets is increasing:

n ≤ m −→ Jn ⊆ Jm

Establish Isomorphism to a Polish Type

The key property that is used is the fact that Bn lies in the space BJn , which is (from
a mathematical point of view) polish. We have formalized polish spaces only as a
type class, that means we need to move to a suitable type, namely the finite maps
⇒F . Recall that ⇒F is only polish if the type of the index set is countable (recall
theorem 5.17). We therefore provide a suitable bijection fm between functions ι⇒ α
and finite maps N⇒F α:

Definition 6.10. function-to-finmap.fm-def:

fmn m := (finmap Jn) ◦ (m ◦Jn to-nat J)

We established that (finmap Jn) provides an isomorphism in lemma 5.20. More-
over to-nat J is injective on Jn according to lemma 3.1, therefore (m 7→ m◦Jnto-nat J)
provides an isomorphism, too. The composition gives us an isomorphism to a polish
measure space: For better readability, let us abbreviate the family of transferred
domains as Nn := to-nat J(Jn) and denote with (ΩF

Nn
,BFNn

) the transferred measur-
able spaces (

∏F
i∈Nn

Univ,
⊗F

i∈Nn
B), and write PFNn

for the push-forward measure of
PJn under fmn.

Lemma 6.11. function-to-finmap.mapmeasure-PiM:

(ΩJn ,BJn , PJn) :: (ι⇒ α) measure-space

is isomorphic to

(ΩF
Nn
,BFNn

, PFNn
) :: (N⇒F α) measure-space :: polish-space
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Zn Bn BF
n

Z ′n Kn KF
n

(emb I Jn)−1 fmn

≈

fm−1nemb I Jn

Z, P0 (ΩJn ,BJn , PJn) (ΩF
Nn
,BFNn

, PFNn
)

projectivity ∼=

Figure 6.2: The objects occurring in the probabilistic argument

Exploit Inner Regularity

Let us denote the transferred version of Bn with BF
n := fmn[Bn]. Because the prob-

ability space (ΩF
Nn
,BFNn

, PFNn
) :: (N ⇒F α) measure-space is polish, inner regularity

(theorem 4.18) allows us to approximate the measure PFNn
BF
n with the measure of

some compact subset KF
n ⊆ BF

n :

PFNn
KF
n ≈ PFNn

BF
n

Over Products Back to Embeddings

We can take the isomorphism in the inverse direction and obtain from KF
n a finite

product Kn := fm−1n [KF
n ] such that PJn Bn approximates PJn Kn – here we exploit

measure preservation of the isomorphism. Moving back to the content P0 on em-
beddings Z, it follows from the projectivity of the family PJ that the content P0 of
the embedding Z ′n of Kn approximates Zn.

Z ′n :=emb I Jn Kn

PJn Bn ≈PJn Kn

P0 Zn ≈P0 Z
′
n

Consult figure 6.2 for a summary of the different objects that occurred in the proof
up to now: We have Zn and Z ′n in the generator Z of the arbitrary dimensional
measurable space (ΩI ,BI). The assumption of a projective family and the way we
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6.3 Extension of Content to Measure

defined the content P0 guarantees that we preserve the measure of the finite products
Bn and Kn in the measure space (ΩJn ,BJn , PJn). The isomorphism between this
measure space and (ΩF

Nn
,BFNn

, PFNn
) given by fmn allows us to identify corresponding

products of finite maps where the measure of BF
n approximates the measure of KF

n

due to regularity of measures of finite maps.

The Probabilistic Argument

The approximations we mentioned before are chosen with a precision that suffices
to show that the content P0 of the difference between Zn and the intersection of all
Z ′k with k ≤ n is smaller than a. Together with the initial assumption P0 Zn ≥ a
we have

P0 (
⋂
k≤n

Z ′k) > 0

from which we can conclude that for every n, we can choose an element yn:

yn ∈
⋂
k≤n

Z ′k

For a fixed n and m ≥ n, the definitions ensure that the restriction of ym to the
domain Jn (recall that Jn is increasing) lies in Kn.

∀m ≥ n. ym|Jn ∈ Kn

6.3.2 Construction of Diagonal Sequence

Consider now an arbitrary index n and the (transferred) sequence of finite maps
(fmn yi)i∈N. For i ≥ n, this sequence lies in the compact set KF

n according to
the previous section and the isomorphism fm. The projection of this sequence to
the index n is contained in the projection of fmn(Kn) to n. Projection on finite
maps is continuous according to lemma 5.6, therefore the projection is compact,
too. The definition of compactness yields a convergent subsequence of projections.
This argument also applies to arbitrary subsequences y′ of y:

Lemma 6.12. finmap-seqs-into-compact.diagonal-tendsto: Existence of
subsequence converging for index n:

∀y′ 4 y. ∃y′′ 4 y′. ((fmn y
′′
i )F n)i∈N converges

From this, we can construct a diagonal sequence as defined in section 3.2: Starting
with a subsequence y′ of y that converges for n = 1, we take a subsequence of y′′ that
converges for n = 2 and so on. The diagonal sequence ((fmn y

(i)
i )F n)i∈N therefore

converges for every index n. Since for every j ∈
⋃
i Ji there is n = to-nat J j, the
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subsequence (y(i))i∈N converges for every index j ∈
⋃
i Ji. We define the resulting

limit point of (y(i) j)i∈N (depending on the index j) zj . Moreover we call z the
function (j 7→ zj).
Now consider an arbitrary n: The restriction z|Jn of z to Jn is the limit point z∗ of

a sequence of restrictions with elements in Kn. Its corresponding set KF
n is compact

and therefore closed. It follows that the corresponding zF∗ lies in KF
n . Therefore

z|Jn is contained in Kn. One can conclude that the embedding emb I Jn {z|Jn}
lies in Z ′n. Z ′n approximates Zn, therefore z|Jn ∈ Z

′
n ⊆ Zn which means that Zn

can not be empty.
Since n was chosen arbitrarily,

⋂
i Zi can not be empty, i.e., does not converge to

the empty set ∅, which concludes the proof.

6.4 Summary: Formalization of the Daniell-Kolmogorov
Theorem

Let us summarize the contents of this chapter in order to give a concise overview of
what has actually been formalized:

• We started out by using the existing formalizations about products and embed-
dings to declare the product space ΩI and its associated product σ-algebra BI .

• We defined the notion of a projective family, the family of finite-dimensional
distributions of a stochastic process.

• One generator of the product σ-algebra is the set of embeddings of finite-
dimensional products. We assume a projective family to define a content on
this generator.

• We prove the existence of an extension of the content on this generator to the
generated σ-algebra BI with standard means from measure theory: We show
that the content is continuous at the empty set. This argument is then rather
involved:

– We construct a sequence of approximations: For this we need results
about polish spaces. In order to profit from them, we have to switch to
the type ⇒F of finite maps

– In order to show that one can choose elements out of these approxima-
tions, we use a probabilistic argument. We therefore switch back to the
type of functions.

– We transfer the obtained sequence of functions to a sequence of finite
maps. Here we can use topological arguments to construct a convergent
diagonal sequence.
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– We switch back to functions to complete the argument.

The Daniell-Kolmogorov theorem can then be stated as follows:

Theorem 6.13. polish-projective.measure-PiB-emb:
Assume

• an arbitrary type ι

• an index set I :: ι

• a polish type α

• the Borel σ-algebra B :: α set set

• a projective family P over B

Then there exists a measure PI that assigns to the embedding of every product of
Borel sets over finite J the value of the according finite-dimensional measure PJ :

∀J ⊆ I. (finite J ∧X ∈ BJ) −→ PI (emb I J X) = PJ X

Moreover PI is a probability measure.

6.5 Discussion

To summarize the experiences of the formalization of the Daniell-Kolmogorov the-
orem, the main complication is that we have to switch between different types: On
the one hand, we want to construct a probability space on arbitrary-dimensional
products, we therefore need to use the function type. On the other hand, the gen-
erator of the probability space involves only finite-dimensional products, because
they have nice properties which we exploit in the proof. The topological properties
we use are only defined for type classes, i.e., they have to hold on the universe of a
type, which forces us to introduce a new type of finite maps. This forces us to pro-
vide suitable isomorphisms between the different types. Transferring between the
different types and providing suitable isomorphisms turned out to be quite tedious.
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7 Conclusion

The existing formalization of probability theory in Isabelle/HOL allows to construct
probability spaces for paths of particular stochastic processes with discrete time and
state space (discrete-time Markov chains). This work provides a generic construc-
tion, i.e., a construction that also works for continuous time and state space. We
formalized the Daniell Kolmogorov theorem, it allows to construct probability spaces
for arbitrary paths from probability spaces for paths with finite domain. In order to
formalize this theorem, we provided topological foundations: We formalized polish
spaces as type classes and we formalized regularity of measures on polish spaces.
The fact that topological notions are formalized for type classes produced technical
complications in our proofs: We needed to define a separate type of functions with
finite domain and provide means to transfer between this type and the ordinary
type of functions.

7.1 Formalization Efforts

One can estimate the efforts for the formalization by the number of lines in our
sources: The auxiliary developments take about 450 lines. Results about topology
and polish spaces (including regularity of measures) take roughly 1000 lines. The
developments about finite maps take 1500 lines. About half of this, however, is
redundant with respect to the existing developments about functions (especially
product sets and the product σ-algebra). The construction of the projective limit
consists of 800 lines of formalized proof.
Let us compare our proofs with the textbook proofs we took as inspiration. Our

proofs about topology are less general than the ones presented by von Queren-
burg [24]. His proofs are based on uniform spaces, but there is no formalization of
uniform spaces in Isabelle/HOL. We therefore formalize our theorems in the more
specific setting of metric spaces.
The textbook proofs for regularity of measures [5] and the existence of the pro-

jective limit [4], both written by Bauer at a similar level of detail take about three
pages each in the textbooks. Also the sizes of the formalized proofs are about equal
(regularity 300 lines, projective limit 400 lines). Note that it is hard to be accu-
rate about these numbers, because one can always exclude parts of the reasoning
in separate lemmas. We believe, however, that the main parts of our formalizations
expose roughly the same amount of detail.
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Despite the similar size of the core proofs, formalizing the projective limit turned
out to be much more tedious: Several topological foundations were missing and we
needed to introduce the separate type of finite maps – because most of topology in
Isabelle/HOL is formalized on type classes – and transfer between measures on the
types of functions and finite maps. We identified measure space isomorphisms as
a suitable concept to structure these technical parts of the proof. We also needed
to provide a formal notion of diagonal sequences instead of the intuitive description
given in Bauer’s proof.

The formalization of regularity was much more straightforward. No technical
difficulties arose, we could therefore basically translate the textbook proof into Is-
abelle/HOL. It was surely an advantage that we took the proof about regularity from
the same textbook that was used to inspire the formalization of measure theory in
Isabelle/HOL.

7.2 Related Work

Our work builds on the probability theory (based on measure theory) formalized
by Hölzl and Heller [10, 11]. Their work is based on the library for multivariate
analysis which was ported to Isabelle/HOL from Harrison’s Euclidean spaces [9].

The first formalization of probability theory in HOL was given by Hurd [14],
who formalizes (in hol98) a probability space for a random bit generator, i.e., an
infinite sequence of random bits. Based on this probability space, he analyzes some
probabilistic algorithms.

Lester [17] formalizes topology and on top of that measure and probability theory
in PVS. Daumas and Lester [8] analyze accumulations of rounding errors with the
help of Doob’s inequality for martingales with finite index set. This is related to
our work because every martingale is a stochastic process, moreover martingales
with finite index set can be used to construct martingales with continuous index
set – and therefore particular stochastic processes with continuous time (see e.g.,
Bauer [4]).

To the best of our knowledge, there are no other formalizations of stochastic
processes or formalizations of the Daniell-Kolmogorov theorem.

A key step in the proof of the Daniell-Kolmogorov theorem is a probabilistic ar-
gument, i.e., the existence of elements with a given property is established by giving
a positive probability to the set of elements satisfying this property. Noschinski [21]
formalizes a proof that is based on a probabilistic argument.
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7.3 Future Work

Future work on this formalization might include generalizing the existing develop-
ments to reduce redundancy, formalize important methods to construct stochastic
processes based on the Daniell-Kolmogorov theorem, and actually apply these con-
cepts by formally analyzing stochastic processes.

7.3.1 Generalizations

There is considerable amount of redundancy because proofs of the formalization of
products of probability spaces by Hölzl [10] exploit the (projective) properties of a
particular projective family. It would be worth generalizing everything that relies
exclusively on projectivity in Hölzl’s developments and use the more general proofs
we gave in sections 6.1 and 6.2.
The introduction of a separate type of finite maps also introduced redundancy,

because many constants operating on and facts about functions needed to be dupli-
cated for finite maps (especially for product σ-algebras). We already discussed in
section 5.7 how a relaxation of topological notions from types to sets would render
the separate type superfluous.

7.3.2 Construction of Stochastic Processes

The Daniell-Kolmogorov theorem we formalized allows to construct a probability
space for stochastic processes from a projective family. But usually one does not
directly give a projective family to construct a stochastic process. Discrete-time
Markov chains – particular stochastic process with discrete time and state space, see
section 2.11.6 – can be described by a stochastic matrix which gives probabilities for
the transitions between states. In order to describe arbitrary stochastic processes,
one can generalize these stochastic matrices to so-called Markov kernels. A Markov
kernel P yields for every point x ∈ Ω (of a measurable space (Ω,A)) a probability
space (Ω′,A′, P x). P x gives the probability distribution when the Markov chain
is in state x.
For continuous time, Markov kernels can be indexed with time, such that Pt x A′

gives the probability that a process in state x finds itself in a state in A′ after t
units of time. One can provide a method to combine Markov kernels, i.e., to give
the probability to reach a state after t+s steps by combining the kernels Pt and Ps.
One can show that semi-groups of kernels, i.e., families of kernels where Pt+s is the
same as the combination of Pt and Ps, define a projective family. The projective
family can then be used to construct a stochastic process. The formalization of
Markov kernels and operations on them would be useful to construct a variety of
stochastic processes in Isabelle/HOL.
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A restriction of the Daniell-Kolmogorov theorem is the fact that the constructed
probability spaces consist of all paths from time into the state space. But one might
be interested only in particular, e.g., continuous paths. Results from probability
theory that show the existence of continuous modifications, i.e., stochastic processes
with continuous paths and the same probability distribution, could be formalized
to overcome this restriction.

7.3.3 Applications of Stochastic Processes

With stochastic processes formalized in Isabelle/HOL, one could formally analyze
any application of stochastic processes. A standard example in probability the-
ory is the so-called Wiener process, which describes Brownian motion, the random
movement of a particle (also called random walk). This would require continuous
modifications. Discrete-time and continuous-time Markov chains can be applied to
queuing theory to model for example population sizes in birth-death processes or
queues in telecommunication or computer systems [15]. Also financial markets can
be modeled as stochastic processes.
Moreover, stochastic processes have important applications in computer science,

in the verification of probabilistic systems: After formalizing probability spaces for
continuous-time Markov chains, one could – similar to the formalization of pCTL
model checking by Hölzl [13] – formalize model checking over continuous stochas-
tic logic (CSL) formulas which is described for example by Kwiatkowska [16] or
Baier [2].
Another interesting topic in computer science is the analysis of continuous-time

Markov decision processes as given by Puterman [22]: Markov decision processes
(see also Baier [3] for discrete-time Markov decision processes) include both non-
deterministic actions and probabilistic behavior and can therefore be used to model
for example concurrent probabilistic systems. Actions are taken at real-valued times,
therefore a history of such a Markov decision process is a sequence of triples con-
sisting of the time, the state at that time, and the decision taken at that time.
Schedulers are used to eliminate nondeterminism, they are based on the history and
therefore possess (for continuous time) an uncountable state space, which makes the
construction of a probability space using the Daniell-Kolmogorov theorem necessary.
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8 Source Code

Attached is a CD with the complete source code. You can also browse and download
the sources online1.

1http://home.in.tum.de/~immler/mastersthesis/
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